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HARMONIC MEASURES, HAUSDORFF MEASURES
AND POSITIVE EIGENFUNCTIONS

URSULA HAMENSTADT

Abstract

Let M be a compact negatively curved Riemannian manifold with universal
covering M, and let §p > 0 be the negative of the bottom of the positive
spectrum of the Laplacean A on M. We use methods from ergodic theory
to show that A + dg admits a Green’s function which decays exponentially
with the distance. Moreover for almost every point { € 8M with respect to
a suitable Borel-measure which is positive on open sets, the unique minimal
positive A + §o — e-harmonic functions on M with pole at { normalized at
a point z € M converge as ¢ — 0 uniformly on compact sets to a minimal
positive A + §p-harmonic function.

1. Introduction

Let M be an n-dimensional compact manifold of negative sectional
curvature, and let M be its universal covering. For every z € M the
harmonic measure w® at z is a Borel-probability measure on the ideal
boundary M of M, which via the canonical identification can be viewed
as a measure on the fibre TIM at z of the unit tangent bundle T'M of
M.

Let T" be the fundamental group of M acting as a group of isometries
on M and T*M. For ¥ € T we then have w?® = w®o (d¥)~!, and hence
the measures w® can be transported to measures on the fibres of the
unit tangent bundle T M of M.

Denote by DTM (resp. DTM) the smooth fibre bundle over M
(resp. M) whose fibre DTM, at z € M (resp. DTM, at z € M)
equals T!M x T*M (resp. TM xT1M). We call a function 8 on DT M
symmetric if 8 is invariant under the natural involution (v, w) — (w,v).
In Section 2 of this note we show:
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2 URSULA HAMENSTADT

Theorem A. There is a Holder-continuous symmetric function
d: DTM — [0,00) with the following properties:

1) There is a number k > 0 such that for every € M the restric-
tion of 8 to DTM, is a quasi-distance on TrM defining the
usual topology.

2) For every x € M the measure w*° is the 1/k—dimensional spher-
ical measure on T*M induced by &~.

Denote by A the Laplacean on M, and let d; > 0 be the negative
of the bottom of the positive spectrum of A on M, which equals the
top of the spectrum of A acting on square-integrable functions on M
(see [21]). For every e > 0 the differential operator A, = A + 4§y — ¢
is weakly coercive in the sense of Ancona [1], and hence the Martin
boundary of A, can naturally be identified with the ideal boundary oM
of M (see [1]). In other words, A, admits a Green’s function G. on
MxM—{(z,z) |z € M} and the Martin kernel K, of A, is a Holder-
continuous function on M x M x 8M such that for every z € M and
every ( € &M the assignment y — K.(z,y,¢) is the unique minimal
positive A.-harmonic function on M with pole at ¢, which is normalized
to be 1 at z. Since A, is in fact coercive the results of Ancona imply
that there are numbers ¢, > 0, x, > 0 such that G.(z,y) < c.e X< dist(z.v)
whenever the distance dist(z,y) of z,y € M is not smaller than 1.

The operator Ay = A + & fails to be weakly coercive in the sense
of Ancona. In fact, Ancona gave an example of a simply connected
manifold N; of bounded negative curvature for which Ay does not even
admit a Green’s function [2]. Ancona also constructed a simply con-
nected manifold NV, of bounded negative curvature such that A, admits
a Green’s function, but the Martin boundary of A consists of a unique
. point. However, under our assumption that M is the universal covering
of a compact manifold, these cases can not occur. More precisely, we
denote for p € M and R > 0 by S(p, R) the distance sphere of radius R
about p in M, and let A, g be the Lebesgue measure on S(p, R) induced
by the restriction of the Riemannian metric on M to S(p, R). In Section
3 and Section 5 we show

Theorem B. Assume that M is the universal covering of a compact
manifold M. Then the operator A + &y admits a Green’s function Go
with the following properties:

1) There are constants a > 0,x > 0 such that Go(z,y) < ae™x dist{z.v)
for all z,y € M with dist(z,y) > 1.

2) There is a number ¢ > 0 such that [, o Go(p,y)?dApr(y) < €
forallpe M,R>1.

3) liminfros [5, ry Go(P¥)*“dApn,r(y) = 00 for every e > 0.
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Moreover we obtain in Section 5:

Theorem C. There is a m (M)-invariant measure class v(00) on oM
such that for v(oo)-almost every ( € M and every x € M the functions
y = K.(z,y,() converge as ¢ = 0 uniformly on compact subsets of M
to a minimal positive Ag-harmonic function on M.

Recall that Jp equals the infimum of the Rayleigh-quotients
[IV¢|1?2 dz/ [ $? dx over all nontrivial smooth functions ¢ on M with
compact support. However §, can also be expressed via a variational
equation on the unit tangent bundle T'M of M. For its formula-
tion recall that the geodesic flow ®* is a smooth dynamical system on
T'M, generated by the geodesic spray X. There is a Holder-continuous
®t-invariant decomposition TT'M = RX & TW** & TW ** where TW**
(resp. TW**) is the tangent bundle of the strong stable foliation W**
(resp. the strong unstable foliation W**). The leaves of the stable
foliation W* with tangent bundle TW* = RX & TW** are smoothly
immersed submanifolds of T'M which are mapped by the canonical
projection P: T'M — M locally diffeomorphically onto M. Thus the
Riemannian metric on M induces a Riemannian metric g° on TW* and
a family A® of Lebesgue measures on the leaves of W*. Write also (,)
instead of ¢° .

The stable Laplacean A° is a second order differential operator on
T*M with Holder continuous coefficients. For a smooth function ¢
on T'M the value of A°¢ at v € T'M just equals the value at v of
the Laplacean of the Riemannian manifold (W*(v), ¢°) applied to the
restriction of ¢ to the leaf W*(v) of W* through v. Moreover denote
the gradient of ¢|(W*(v),¢°) at v by (Vé¢)(v) € T,W>.

Let 1 be a Borel-probability measure on T M which is absolutely
continuous with respect to the stable and strong unstable foliation, with
conditionals on stable manifolds in the Lebesgue measure class. Recall
from [12] the definition of the ¢° - gradient of n (if this exists). It is the
unique section Y of TW? which satisfies

[oa+v)@) dn = [w(a* +Y)(@) dn

for all smooth functions ¢, on T M.

Call a section Z of TW* of class C}* for some « > 0 if Z is Holder-
continuous of class o and differentiable along the leaves of the stable
foliation, with leafwise first order jets of class C. If Z is of class C1*,
then for every v € T'M the divergence div Z(v) of Z|(W?(v), %) is
defined at v and the assignment v — div Z(v) is of class C*.

With thise notation in Section 4 of this note we show



4 URSULA HAMENSTADT

Theorem D. Let  be a Borel-probability measure on T* M, which is
absolutely continuous with respect to the stable and unstable foliations,
with conditionals on stable manifolds in the Lebesque measure class.
Assume that the g°-gradient Y of n is of class C+* for some a > 0.
Then

~30 = sup{ [ $(A%(9) + Y(9) + 9l div(¥) + 1Y) dn |
e C=(T'M), [ # dn=1}.

As a corollary, we find a new proof of a result of Ledrappier; namely,
let ¢ be the unique Borel-probability measure on T'M such that
J(A*¢) do = 0 for every smooth function ¢ on T* M (see [18], [12]). The
g°-gradient Y of o satisfies div (Y) = —||Y'}|?, and [ [|Y]|* do equals the
Kaimanovich-entropy hy of the Brownian motion on M. In [19] Ledrap-
pier showed:

Corollary. §, < 1hyx with equality if and only if M is asymptotically
harmonic and hence locally symmetric.

Proof. Using the constant function 1 in Theorem D we obtain
—8 > —thk. Assume that the equality holds and let ¢ be a smooth
function on T'M with [ ¢ do = 0. Then

= [+ t9)A%8) + ¥ (49) — L+ )71 IF] do lumg
= [(AY ) +Y(8) = 39V IP) do = ~3 [ VI do,

since o is a harmonic measure for A* 4+ Y. But £ = 0 is a maximum for
the assignment

S +tP)[A%(td) + Y (t4) — (1 + ) glIY)*] do
T(#242 + 1) do ’

and hence the differentiation at ¢ = 0 yields 0 = —~1 [ ¢||Y'||* do. Since ¢
was arbitrarily chosen such that [¢do = 0, we conclude that
”Y"2 = hK.

Now write Y = (X,Y )X + Y** where Y*® is a section of TW?**. Let i
be the Bowen-Margulis measure on 7'M, i.e., the unique ®*-invariant
Borel-probability measure whose entropy equals the topological entropy
h of the geodesic flow. Since the pressure of the function (X,Y’) vanishes
[16] we have

< [y dus ([ 1EY) P e < ([IYIF dw) = B

t—
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with equality if and only if Y** = 0. But hx < h? [16], and hence Y =
vhxX. Thus div(X) = —/hg implying that the mean curvature of the
horospheres in M is constant, i.e., that M is asymptotically harmonic.

By the results of Benoist, Foulon, Labourie, Besson, Courtois, Gallot
(7], [4], [5], the manifold M is therefore in fact locally symmetric.

Let now Z be the g*-gradient of the Lebesgue-Liouville measure A on
T'M. In the same way as above we obtain that dy < [ 1| Z||* dA with
equality if and only if M is locally symmetric.

Let P: T'M — M be the canonical projection. For every z € M
the restriction , of the natural projection w: T*M — M to T!M is a
homeomorphism. For v € T*M, denote moreover by 8, the Busemann
function at w(v) which is normalized by 8,(Pv) = 0.

2. Harmonic Gromov - distances

For € > 0, again let K,: M x M x 8M — (0,00) be the Martin ker-
nel of the operator A, = A-+d,—e. Recall that T M (resp. T M) admits
a natural embedding into DTM (resp. DTM ) by mapping
v € T'M (resp. v € T'M) to the element (v,v) of the diagonal in DTM
(resp. DTM). With the notation from the introduction we then have:

Lemma 2.1, For everyp € M and v #w € T,}M the limit

—[logG (2,y) — log G.(p,y) — log G.(z,p)]

1
y—m(v),z2—7(w) 2

Be(v,w) =

ezists. The function B.: DTM —TjM — R is continuous and invariant
under the action of m,(M) on DT M. Moreover for (v,w),(z,u) € DTM
with z € W*(v),u € W*(w) we have

B (v, w) — Be(u,z) = —[logK (Pv, Pu,m(v)) + log K.(Pv, Pu, 7(w))].

Proof. By the Harnack inequality at infinity of Ancona and the ar-
guments in the proof of Theorem 6.2 of Anderson-Schoen [3], for fixed

~ . Gelz,y .. . _
p,y € M the function z — N CRATAET) has a Hélder continuous exten

sion to the boundary, uniformly in p,y € M. From this we conclude as
in [17] that the limit 3. (v,w) as above exists and depends continuously
on (v,w) € DTM. But also

llli_ﬁtg(log G(p,y) —logG.(q,y)) =log K.(g,p,¢)

and from this we obtain the required formula for 8. (v, w) — B (u, 2).
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Recall that we have a Hélder continuous foliation DW* on DT M
and DT M with the property that the leaf DW?* (v, w) of DW* through a
point (v,w) € DT M consists of all points (u, z) € DT M withu € W*(v)
and z € W*(w). Then the first factor projection R;: DTM — T'M
maps the foliation DW* to the stable foliation. Moreover the natural
embedding of T'M into DTM is an embedding of the foliated space
(T* M, W?) into the foliated space (DTM,DW?).

Recall the definition of the Gromov products on OM (see [9]); namely
for - € M and v # w € T M define

)= lim %(dist(m, y) + dist(z, 2) — dist(y, 2)).
Clearly (v|lw) > 0 for all (v,w) € DTZZM, (v|lw) = 0 if and only if
w = —v, and for (v,w) € DTM — T'M and (u,z) € DW*(v,w) we
have (vlw) — (u|z) = 3(6,(Pu) + 8, (Pu)). Now the functions (|) and
B on DTM - T'M are clearly invariant under the action of 7y (M) on
DTM — T*M, and hence they project to functions on DTM — T'M
which we denote by the same symbols. These functions can be compared
as follows:

Lemma 2.2. There is a number a > 0 and for every € € (0, 8]
there is a number c. > 0 such that e~®P(®) > e ) for gl
(v,w) € DTM —T*M.

Proof.  Define A = {(v,w) € DTM|Z(v,—w) < Z}. Then A is
a compact subset of DTM — T'M, and hence by continuity of the
functions g, for fixed ¢ € (0, 3] there is a number a, > 0 such that
Be(v,w) < a, for all (v,w) € A.

Recall that the Riemannian metric on M can be lifted to a metric on
the leaves of DW* C DT M in such a way that the norm of the leafwise
gradient of the function (|) with respect to this metric is bounded on
DTM — {T*M U A} pointwise from below by a universal constant b > 0.
Moreover by Lemma 2.1 and the Harnack inequalities the norm of the
leafwise gradient of 3, with respect to this metric is pointwise uniformly
bounded on DTM —T!'M by some constant ¢ > 0 which is independent
of € € (0,80]. Let now (v,w) € DTM — {AUT*M} and let ¢: [0,00) —
DW#(v,w) be the flow line of the gradient flow of the restriction of
—(]) to DW?(v,w). Then there is a minimal number 7 > 0 such that
¢(7) € A and we can estimate

ofw) 2 [ 8017 de 2 ¥

On the other hand, in the same way we see that 8 (v, w) < B(¢(7))+cr.
With a = b*/c it follows that a8, (v,w) < (v|w) + a.a for all (v,w) €
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DT M — T'M. This shows the lemma.

Lemma 2.3. For every e € (0,6,] there are numbers @, > 0,2 > 0
such that e~ (1%) > g e~ L) for all (v,w) € DTM — T'M.

Proof. Fix again a number € > 0. The function (|) on DTM ~T*M
assumes its minimum 0 precisely on the set {(v,—v) | v € T'M}. By
compactness and continuity for fixed e € (0, dy] there is further a number
a. > 0 such that 8,(v,—v) > —a, for all v € T* M.

Let now (v,w) € DTIM; T'M and identify the leaf DW* (v, w) of
DW? through (v,w) with M via the projection P o R'. Write z = Pv
and let A be the convex subset of M of all points which lie on a geodesic
joining 7(v) to m(w). Denote by y the unique projection of z to A, let
7 = dist(x, y) = dist(z, A) and let z € T, M be such that 7(z) = 7 (v);
then z € C(z, 37) N C(—z, i), where for u € T*M and v € (0,7] we
denote by C(u,~) the cone of angle y and direction u in M.

Now the operator A, is coercive and hence its Green’s function decays
exponentially at infinity ([1]). Thus the Harnack inequality at infinity
of Ancona together with continuity in v implies that there are numbers
be > 0,a, > 0 such that 3(log K.(y,z,7(v)) + log K.(y,z,m(w))) <
—a,T + b,.

This shows that G.(v,w) > a.7 — a. — b.. On the other hand, the
norm of the gradient of (6, + 6-,) is bounded from above by 1 and
consequently we obtain (v|w) < 7. Thus SB.(v,w) > a.(v|lw) — a, — b,
which implies the lemma.

Recall that M x OM is naturally homeomorphic to the unit tan-
gent bundle T*M of M by assigning the point (Pv, 7 (v)) E~M x OM
to v € T*M. Thus for ¢ > 0 there is a unique section £ of TW?
over T'M with the property that for every v € T'M the restriction
of £ to W*(v) projects to the gradient of the logarithm of the func-
tion y — K.(Pv,y,n(v)). As in Section 3 of [10] we deduce that & is
Holder continuous. Moreover £, is clearly equivariant under the action
of m;(M) and hence projects to a Holder continuous section £, of TW*
over T*M. In particular the assignment v — (X, ¢.)(v) is a Holder
continuous function on T! M.

Let M be the space of ®t-invariant Borel-probability measures on
T'M. M is a compact convex subset of the dual of the Banach space
C°(T*M) of continuous functions on 7'M equipped with the weak*-
topology. For n € M, denote by h,, the entropy of n as a ®*-invariant
measure on 7' M. Recall that for a continuous function f on 7'M the
pressure pr(f) of f is defined by pr(f) = sup{h, — [ fdn|n € M}.

For € > 0 let g(¢) (resp. 7(¢)) be the pressure of the Holder continuous
function 2(X, &) (resp. (X,&.) ) on T"M.
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Lemma 2.4. The assignments € — q(€) and € — r(€) are continuous
and strictly decreasing on (0, d)-
Proof. The considerations of Ancona [1] show that the assignment

TlM X (0750] - Rv ('U,G) - (X,fﬁ)('U)

is continuous, and hence the function ¢ : € € (0,0,] — ¢(e) € R is
continuous as well (see [22]). To show that g is strictly decreasing for
v € T'M and € > 0, denote by uf the A.-harmonic function

y € M — ui(y) = K.(Pv,y,n(v))

with pole at 7(v). Let € > 6 > 0; the Harnack-inequality at infinity of
Ancona [1] and his estimates for the Green’s functions G, G5 of A, A4
show that there is a number ¢ > 0 depending on € and ¢ but not on
v € T'M such that

cul (PO ') < G (Pv, PO ') < ¢ le™*G;(Pv, PP 'v)
< c el (PO )

for all t > 1. If w is the projection of v to T'M then

t
log uf (P®'v) = —/ (X, NP w)ds

0

<logul(P®*v) —ct — 3logc
t

=— / (X,&)(@°w)ds — ct — 3loge.

0

Now let 7 € M be ergodic with respect to ®¢; by the Birkhoff ergodic
theorem there is then w € T' M such that

~ [ 6dn = tim § [ (x.c)@ s
t=oo t Jo
and
1 t
- [ gdan = lim 3 [ (X&) (@ *w)as
0
and consequently
- [(X,eddn < - [(X,g)dn - c

by the above estimate. Since ergodic measures in M are just the ex-
tremal points of M this inequality then holds for every ®!-invariant
Borel-probability measure n on T'M. In other words we have
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by~ [ 20X, 63 < by — [ 20X, €bdn — 2¢

for all n € M and consequently g(¢) < g(6) — 2¢ < ¢(d). The proof for
7(e) is completely analogous.

Recall from [12] and the introduction the definition of the g°-gradient
of a Borel measure p on T* M which is absolutely continuous with respect
to the stable and strong unstable foliation, with conditionals on stable
manifolds in the Lebesgue measure class; namely, let p be the lift of
p to T'M, and let 5(c0) be a Borel-probability measure on M which
defines the measure class of the projections of the conditionals of 5 on
strong unstable manifolds. For v € T'M we can represent j§ near v
in the form dp = ad)® x dp(oco) where a : T'M — (0,00) is a Borel
function, and we identify 5(oco) with its projections to the leaves of W**
via the canonical projection 7 : T*M — 0M.

For
(v,w) € D ={(u,2) e T'M x T*M | z € W*(u)}

define (v, w) = a(w)/a(v). Then the function [ : D — (0,00) is in-
dependent of the choice of 5(c0). If for j-almost every v € T°M the
function [, : W*(v) — (0,00),w = l,(w) = (v, w) is differentiable, then
we obtain a measurable section Z of TW* over T*M by assigning to
v € T'M the gradient at v of log [, with respect to the Riemannian
metric g° on W*(v). This section of TW* over T"M is equivariant un-
der the action of m; (M), and hence projects to a measurable section Z
of TW? over T'M which we call the g*-gradient of p. We then have
J(div(Y) + (Z,Y))dp = 0 for every leafwise differentiable section Y of
TW:? (see [12]) where for v € T* M we denote by div Y (v) the divergence
at v of the restriction of Y to a vector field on (W*(v), (,)) = (W*(v), ¢°).

Lemma 2.5. ¢(¢) <0 for all € € (0, d)-

Proof. Ledrappier showed in [16] that the pressure of the function
(X, &s,) vanishes; this implies g(d) < 0.

Assume to the contrary that g(€) > 0 for some € > 0. By continuity
we then can find some € € (0, ] such that g(e) = 0.

Let v** be a family of conditional measures on strong unstable man-
ifolds of the Gibbs equilibrium state v, for the function 2(X,¢.) with
the property that Zu°* o & |,_o= 2(X,&.). Let v be the finite Borel
measure on T M which satisfies dv = d)\* x dv**; then the g*-gradient
of v equals 2¢,.
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Let 6 € (0,€); then div &+ || &5 ||> +0 — § = 0 and consequently
0= [ (divigs — &) +2(6., & — £
= [ e 1P +5 = = I & 1P +2(60 €D
= [ ll&s =g 1P +8 - ),

which is possible only if § > ¢. From this we derive a contradiction to
our assumption g(e) = 0.

Corollary 2.6. For every € € 0,0y there is a unique number a(e) €
[1,2) such that pr(a(e){X,&)) =0, and moreover a(éy) = 1.

Proof.  The fact that pr({X,&;)) = 0 follows from the results of
Ledrappier [16]. Let € € (0,8,); then 7(¢) > 0 and ¢(e) < 0 by Lemma
2.4 and Lemma 2.5. On the other hand, the function s — pr(s{(X,&.)) is
continuous and hence has to vanish for some a(e) € (1,2). This number
a(e) is unique (a fact that is not needed in the sequel).

For € > 0 let w, be the unique Gibbs-equilibrium state of the function
a(e){X, ). Then w, admits a family ™ of conditional measures on
strong unstable manifolds with the following properties:

1) The measures w®* are locally finite, positive on open sets and
absolutely continuous with respect to the stable foliation.

2) The measure @, on 7'M which is defined by dw, = d\* x dws®
has total mass 1 and its g*-gradient equals a(€)é..

For every z € M the projection : T'M — OM restricts to a home-
omorphism 7, of T2 M onto &M, and for every v € T M the restriction
of m;lom to Ws“('u) isa homeomorphlsm of W**(v) onto T M — {—v}.
Thus the measure @* on W**(v) which is lifted from the measures
w?* on the leaves of W** C T'M projects under 7,* o T|w.(y) to a
Borel-measure w? on T M, whose restriction to TIM {—v} is locally
finite. The measures w?,w®(v,w € T*M) are absolutely continuous on
T'M — {~v, —w}, w1th contlnuous Radon—leodym-denvatlve More
prec1sely, for w € T!M — {—v} the Radon-Nikodym-derivative J¢(w) at
w of w? with respect to w? is defined and the function Jg: w — J¢(w)
is continuous on T!M — {—v}. Thus we obtain a Borel-measure w? on
T!M by defining w® = Jéw?. Since w® = Jiw for every w € TlM
the measure w? is deﬁned independent of the choice of v € T'M and is
finite.

For v € T'M and t > 0 the homeomorphism 7pk., © Tpy TPvM —

The:, M is absolutely continuous with respect to the measures w”?, wF®'?,

and its Jacobian at v equals (€ Jy K@ 0) 8 poreover the measures
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w? (z € M) are equivariant under the action of the fundamental group
71 (M) of M on T' M, and hence induce for every p € M a finite measure
w? on T, M. The measures wj, (p € M) just coincide with the harmonic
measures w? from the introduction up to a universal constant.

Let p > 0. Following Margulis [20] we call two subsets By, By of
T'M which are contained in leaves T, M, T, M of the vertical foliation
of T' M into the fibres of the fibration T*M — M p-equivalent if there is

a continuous map f : By x [0,1] - T'M with the following properties:

i) For every v € B; the set f({v} x [0,1]) is a smooth curve of
length smaller than p in W#(v).
ii) f(v,0) = v and f(v,1) € B, for all v € B;.
iii) The map v € B; — f(v,1) € B, is a homeomorphism.

With this notation we then have:
Lemma 2.7. For every § > 0 there is a number p = p(d) > 0 such
that ‘
WwP(A)/wi(B) <d+1

for all € € (0,8y) and all p-equivalent nontrivial open subsets A, B of
leaves of the vertical foliation. In particular, there is for every v > 0 a
number ¢ = ¢(ry) > 0 such that

w{w € Tp,M | L{v,w) <7} € [, (]

for allv € T'M and all € € (0, 8].

Proof. Let C C T'M be a set with a local product structure,
given by a vector v € T'M, a number r > 0, the open ball B*(v,r) of
radius r about v in (W*(v), (,)), the open ball B*(v,r) = {w € Tp, M |
Z(v,w) < r} of radius r about v in T}, M with respect to the angular
metric and a homeomorphism [, |: B*(v,r) x B*(v,r) = C with the
following properties:

i} [w,v] = w for all w € B*(v,r).
ii) [v,2] = 2z for all z € B*(v, 7).
iii) [w, 2] € W*(z) N T}, M for all w € B*(v,r), all z € B¥(v,r).

Let € > 0; then for every z € Bf(v,r) the canonical map which
assigns to w € B®(v,r) the point [z,w] € TH,M is absolutely contin-
uous with respect to the measures w?, and its Jacobian J(z,w) at w
equals the value at z of the unique function ¢, on [B*(v,r),w]| which
satisfies ¢, (w) = 1 and whose gradient with respect to the metric (,)
on W#(w) D [B*(v,r),w] equals a(e)&,. Since by the Harnack inequal-
ity for positive A.-harmonic functions the vector fields £, are pointwise
uniformly bounded in norm, independent of € € (0, §;], the first part of
the lemma, follows from the definition of p-equivalence.
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Choose now r > 0 sufficiently small that for every v € T*M there
is a subset of T'M with a local product structure containing B*(v,r)
and B*(v,r). Define a finite Borel measure @, on T*M by dw.(v) =
d)\* X dwP?(v) (in fact this measure coincides with the Borel probability
measure- equally denoted by @,.- which was defined after Corollary 2.6,
see [14]). Thus there is a number a > 0 such that

a” N (B*(v,r))w* (B (v,7)) < @[B*(v,7), B"(v,7)]
< aX*(B°(v,m))w.” (B"(v,r))

for all v € T'M and all € > 0. Since by the definition of \* there
is a number b > 0 such that A*(B*(v,r)) € [b71,b] for all v € T'M
and moreover 0 < @ (T*M) < 0o, we obtain the existence of a number
Co > 0 not depending on € € (0,d] such that wP*(B*(v,r)) < Cp for
all v € T'M. |

Now let @, be the lift of @, to T' M. Since every leaf of W* is dense
~ in T'M, there is a number R > 0 such that for every 9 € T"M the
subset C of T'M with a local product structure which is defined by
CnNW#(¢) = B*(4,R) and CNTH M = B*¥(v,) projects onto 7" M. The
above arguments applied to @, then show & (C) < const. wF?B*(3,7)
where the constant does not depend on % and e. But & (C) > const.
and this implies that the measures wf*(B?(v,r)) are bounded from be-
low by a universal constant as well. These arguments are valid for all
sufficiently small 7 > 0 and from this the lemma follows.

For € € (0,680] let again B.: DTM — T*M — [0, 00) and a(e) € [1,2)
be as before. For v € T*M and p > 0 let

B(v,p) = {w € Tp,M|e~#®* < p};

this is a closed neighborhood of v in TL, M. For p € M and a Borel-
subset A of T} M write

¢2(4) = supint{ 3" pf | p; <1/i (12 1)
2 ]=1

and A C U, B.(v;,p;) for some v; € TI}M}.

Then ¢? is a Borel-measure on Tz}M (which a priori might be zero or
infinite). Moreover the measures (P project to families of Borel measures
on the fibres of 7'M — M which we denote by the same symbols.

Now we obtain the following generalization of Theorem A from the
introduction:

Proposition 2.8. For every € > 0 there is a number b, > 0 such
that ¢? = bw? for all p € M.
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Proof. 'We show first that the measures (? are finite, and define the
same measure class as the measures w? (p € M). For this let ¢ > 0 be
such that for every v € T'M, every t > 0 and every w € TP,,M with
Z(v,w) < 7/4 we have

K (Pv, P *v,m(v))/K.(Pv,P® v, n(w)) € [c, d];

such a number exists by the Harnack inequality at infinity of Ancona.

Fix a number 7 > 0 which is small enough that for every v € T'M
we have B.(v,r) C {w € T},M|Z(v,w) < Z}; such a number exists
by Lemma 2.2. By Lemma 2.3 there is then a number o > 0 such
that B.(v,c7'r) D {w € Tp,M|Z(v,w) < a} for all v € T'M, and
consequently Lemma 2.7 shows that w?(B.(v,c™'r)) > & > 0 for all
peM,ve TlM where & is a universal constant.

Let pe M,v e TIM and let p < ¢7!r. By continuity there is a num-
ber 7 > 0 such that K. (Pv, P®7v,m(v))p = r. For w € B,(®7v,c"!7)
and u = 7, (n(w)) we then have

e P = K (Pv, P®7v,7(v)) 2K, (Pv, P®"v, m(w))~1/2e=Pe(w:270)
< KG(P’U,P@T’U,’N(’U))_IT =P,

and consequently m,(B(®7v,c !r)) C B(v,p). Lemma 3.6 of [10] and
the Harnack inequality at infinity of Ancona thus imply that there is a
number x > 0 such that

wP(B(v,p)) > K.(Pv, PO, 7(v)) )€y = (9,

On the other hand, choose s > 0 such that K.(Pv, P®°v,n(v))p = c'r.
Let w € Tpgs, M with e P<(¥'9%) = r and let u = m,(w). Then

e—ﬂe(”,u) 2 C—IKE(P'U, Pq)s’l), W(U))—lr =p,

and consequently B.(v,p) C m,B.(®°v,r). As before this means that
there is ¥ > 0 such that w?(B(v,p)) < xp*¢). In other words, for every
v € T*M and every p < r we have xp*® < w?(B(v,p)) < xp*. This
implies in particular that ¢? > ¥ ~'w? for all p € M.

Let x > 0 be sufficiently small that =~ satisfies the quasi-ultrametric
inequality [14] on the fibres T, M (p € M); such a number exists by

Lemma 2.2 and Lemma 2.3. Let p > 0 and let vy,..., v, € TI}M be
a maximal system of points such that the balls B.(v;,p) C TI}M are
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pairwise disjoint. Then the balls B,(v;,4/*p) cover TZ}M and hence

¢P(T3M) < limsupk(p) - 41/ p*(©)

p—0

< 4Ryt limsg%wf(ufg’l)Be(vi,p)) < 4try L
p
In other words, the measures ¢ (p € M) are finite and define the same
measure class as the measures w?.

We are left with showing that (? = b.w? with a universal constant
b. > 0. Since by their definition the measures (? are equivariant under
the action of 7; (M) it suffices for this to prove that for p € M,v € TZ}M
and ¢ € R the Jacobian of the projection 7, with respect to the measures
(P2 and (P at ®'v equals K,(P®'v, Pv,n(v))*). But this is a direct

€

consequence of the definitions and the fact that

lim e Pw:2') fo=Ae(m(w)¥) = K (P&ty, Pu,7(v)).

w—dty

3. Asymptotic properties of the Green’s
function for A + 6,

This section is devoted to the proof of the first part of Theorem B in
the introduction. We resume the assumptions and notation of Sections
1 and 2. In particular recall the definition of the Holder-continuous
sections (X, &) of TW? over T* M for € > 0.

First we estimate for a € [1,4] and € € (0,d,] the entropy of the
unique Gibbs equilibrium state for the function a{X,£,).

Lemma 3.1. There is a number x > 0 such that for every a € [1,4]
and every € € (0,8, the entropy of the unique Gibbs equilibrium state
for the function a{X,&.) is not smaller than x.

Proof. By the Harnack-inequality the functions a(X,£.) are point-
wise uniformly bounded in norm, independent of a € [1,4] and € €
(0,d,]. Thus if we define p(a,e) to be the pressure of the function
a{X,&,), then this defines a continuous function p: [1,4] x (0,d0] = R
which is uniformly bounded by a number p > 0.

Identify the diagonal {(v,v) € DTM | v € T*M} of DTM with T* M.
For (v,w) € DTM — T'M, again let (v|w) be the Gromov-product of v
and w, and for (a,€) € [1,4] x (0,6] and (v,w) € DTM — T'M define
5(a,e)(v,w) = e~ WP(w)-p@)(¥lw) The function d(a,€) is continuous,
symmetric and admits a continuous extension by zero to the diagonal.

We claim that there is a number & > 0 and for every (a,€) € [1,4] x
(0, 8] a number c(a, €) > 0 such that 6(a, €)(v,w) > c(a,€)e ) for all
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(v,w) € DT M. For this simply recall from Lemma, 2.2 that e #<(*¥) >
cce~Ww)/e for all € € (0,8 and all (v,w) € DTM, where & > 0 is a
universal constant and ¢, > 0 depends on €.

For p € M let now v(a,¢)? be the measure on T) M obtained as in
Section 2 from the conditionals of the Gibbs-equilibrium state v(a, €) for
a{X,&.), and let u? be the measure induced from the conditionals of the
Bowen-Margulis measure. The arguments in the proof of Proposition
2.8 then show that up to a universal constant the measure v(a, €)? is just
the 1-dimensinal spherical measure induced by the ”distance” d(a, €) on
T} M, while p® is up to a universal constant the h-dimensional spherical
measure induced by the ”distance”

p: (v,w) = e @)

where h > 0 is the topological entropy of the geodesic flow on T M.
Since d(a, €) > c(a, €)p® this means that the Hausdorff dimension of the
measure v(a, €)? with respect to the "distance” p on T M is not smaller
than 1/b. On the other hand, by [11] this Hausdorff dimension (which is
independent of p € M) is just the entropy of the Gibbs-measure v(a, €).
This shows the lemma.

Corollary 3.2. For every e > 0 the pressure of the function 4(X,&.)
is not larger than —y, where x > 0 is as in Lemma 3.1.

Proof. Let € > 0 and let v be the unique Gibbs-equilibrium state of
the function 4(X,¢&.); then h, > x by Lemma 3.1. On the other hand,
by Lemma 2.5 the pressure of the function 2(X,&,) is non-positive and
consequently 0 > h, — 2 [(X,&)dv > x — 2 [(X,&.) dv. From this we
conclude that

hu “4/<X:§e) dv =p7‘(4<X,§E)) S hu _2/<Xa§e) dV—X .<_ —X

which shows the corollary.

Corollary 3.3. [{(X,&.)dn > x/4 for every n € M and every € €
(01 60]

Proof. Let 1 be a ®'-invariant Borel-probability measure on T M.
Then h, > 0 and h, — 4 [(X, &) dn < —x by Corollary 3.2 from which
the corollary follows.

Corollary 3.4. The operator A + 6y admits a Green’s function Gy,
and the A + &g - Martin boundary does not consist of a single point.

Proof. Let v:R — M be a geodesic in M whose projection to
M is closed of length 7 > 0. For ¢ > 0, denote by f} the unique
minimal positive A.-harmonic function on M with pole at «y(co) which
is normalized by f(y(0)) = 1. Let w € T*M be the projection of
4'(0) € T*M. Then w is a periodic point for ® of period 7 > 0, and
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f(y(m)) = eJo (Xt (@7w) ds > e”*/4 > 1 by Corollary 3.3. Since the space
of positive A,-harmonic functions (e € (0,d]) on M which are normalized
at y(0) is precompact with respect to uniform convergence on compact
sets, we can find a sequence {¢;} C (0,do] such that ¢, =+ 0 (j — o0)
and that the functions fj; converge uniformly on compact subsets of M
to a Ag-harmonic function fg. Clearly fof (v(7))/f5 (7(0)) > e™/* > 1.
On the other hand, the same argument applied to the geodesic ¢ —
v (—t + 7) whose tangent projects to the periodic orbit of & through
—w, yields a positive Ag—harmonic function f; on M which satisfies

o (v(@)/f5 (v(0)) < e7™¥* < 1L

But this means that f; and f; are not constant multiples of each other.
By the results of Sullivan [21] we conclude from this that A, admits a
Green’s function and further that the Ay-Martin boundary of M does
not consist of a single point.

Write now p(e) = pr(4(X,&.)) and let 7. be the Gibbs equilibrium
state of the function 4(X,¢{.). Then 7. admits a unique family n®
of conditional measures on strong unstable manifolds which transform
under the geodesic flow via £ {n o ®}|;=q = 4({, X) — p(€) and such
that the measure 7, on T* M which is defined by d7j, = d)A° x dn®* has
total mass 1.

We use these measures to define as in Section 2 a family of finite
Borel-measures 7 (p € M) on the leaves of the vertical foliation of
T'M. As in Section 2 we arrive at

Lemma 3.5. For every § > 0 there is a number p = p(d) > 0 such
that

ne(A)/ni(B) <é+1
for all € > 0 and all p-equivalent nontrivial open subsets A, B of leaves
of the vertical foliation. In particular, there is a number ¢ > 0 such that
n?(TyM) € [c™!,c] for allp € T'M and all € > 0.

For p € M and R > 0 let S(p, R) be the distance sphere of radius R
about p in M and let )\, g be the Lebesgue measure on S(p, R). Write

p(0) = limp(9) < —x.
Corollary 3.6. There is a number ¢ > 0 such that

S(p,R)

forallp € M, all R > 1 and all € € [0, &].
Proof. By the maximum principle for positive A -harmonic functions
on M (e € [0,dy]) there is a number a > 0 not depending on € such that
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for all p,z € M with dist(p,z) > 1 and every positive A.-harmonic
function f on J}Zf with f(p) =1 we have G.(p,z) < a~!f(z).

For w € T'M the Jacobian J,(w,t) of ¢ at ®‘w with respect to the
measures 7P on the leaves of the vertical foliation equals

K. (P®'w, Pw,m(w))*e 9 > oG (Pw, P®'w)te P9 (£ > 1),

and hence Lemma 3.5 together with the Harnack inequalities shows that
there is a constant b > 0 not depending on € € [0,6],w € T'M and
t > 1 such that for every v € T'M and every ¢t > 1 we have

nP*'{w € Tp,M | dist(P®'w, PO'v) < 1} > be PG (Pu, POtv)*.

Since the total mass nf(Tz}]\;I ) of TI}M with respect to 7P is bounded
from above by a positive constant not depending on ¢ € [0,d,] and
p € M, a further application of the Harnack inequality for the Green’s
function yields the corollary (compare the proof of Corollary 3.13 in
[10]).

Now we are ready for the proof the first part of Theorem B:

Corollary 3.7. There is a number ¢ > 0 such that Go(z,y) <
ce x4/t for ol 2,y € M with dist(z,y) > 1.

Proof.  Since p(0) < —x, Corollary 3.6 implies that the integrals
Js(z,n) Go(2,y)eX dX; g(y) are bounded from above by a constant a > 0

which is independent of z € M and R > 1. Let Ry > 1 be sufficiently
large that A, rS(z,R) > 1 for every z € M and R > R,.

The Harnack-inequality for positive Ag-harmonic functions on balls
shows that for z,y € M with R = dist(z,y) > Ry, there is a ball B about
y in S(z, R) with A, r(B) = 1 and such that Go(z,2) > pGo(z,y) for
all z € B, where p > 0 is a universal constant. Now if Go(z,y) >
20!/ p~/te=xdist(=v)/4 then this implies [, Gg(z,y)eXUitE@V dX, o >
8a, a contradiction to the above.

4. A variational equation for 4,

The purpose of this section is to prove Theorem D. For this let 7
as in the introduction be a Borel-probability measure on T M which
can be written with respect to a local product structure in the form
dn = dX° x dn®*, where n°* is a family of locally finite Borel measures
on the leaves of the strong unstable foliation, such that the g*-gradient
Y of n is of class C1®. Since (X,Y) = £7° o ®* |, the family n** is
in fact a family of conditional measures on strong unstable manifolds of
the unique Gibbs equilibrium state induced by the Holder continuous
function (X,Y). In other words, there is a family 7** of conditional
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measures on strong stable manifolds such that the Borel-probability
measure 77 on T'M, which is defined with respect to a local product
structure by dij = dn®*® x dn** x dt, is invariant under :the geodesic flow.

For v € T*M, and ¢ € R, define ((v,¢) = (;(v) = edo F V@) & tpeoy
¢ is a multiplicative cocyle with respect to the geodesic flow.

Let v € T'M and let A C W**(v) be a compact ball with nonempty
interior whose boundary is a set of measure zero with respect to n**.
Denote by A\*° the Lebesgue measure on the leaves of W** defined by
the lift of the Riemannian metric on M. For every ¢ € R we then can
view the restriction of A\** to ®*A as a finite Borel measure on T M.
The arguments of Ledrappier in [17] then imply the following:

Proposition 4.1. The measures ((_; o ¥)A*® |p-:4 converge as
t — oo weakly to the measure n°°(A)n.

This is used to show:

Lemma 4.2. Let

= sup{ [ $(A(9) + Y (9) + ol div(Y) + ZIVIP]) dn |
0% ¢eCoT'M /¢ dn =1}

then —dp 2> .
Proof. Define a, as in the statement of the lemma; we show first
that «, < oco. For this recall that the function

- (3 div(¥) + IV o)

is continuous and hence bounded on T* M, and consequently
1 .. 1
[ 81 dver)+ 5IVIP o/ [ ¢ dn

is uniformly bounded for all nontrivial continuous functions ¢ on T M.
On the other hand, for every smooth function ¢ on 7'M we have

[ a0 @ +Y@) dn=— [ 1961 dn <0

(see [12]), and consequently o, < oco.

Let C°(M) be the vector space of smooth functions on M with com-
pact support. Recall that §o > 0 equals the infimum of the Raleigh-
quotients of nonvanishing elements of C°(M). If Ay denotes the Lebes-
gue measure on M, then for ¢ € C°(M) this Rayleigh quotient is just

- [wlawing/ [#drg.
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Thus it suffices to find a function ¢ € C>(M) such that for every € > 0
[#89) dng 2 (@ - ) [0 drar

For this we choose v € T'M and identify M with (W*(v),¢°). As be-
fore we denote by A*° the Lebesgue measures on the leaves of the strong
stable foliation induced by the Riemannian metric on M, and write
dX* = dt x d)X°* where dt is the 1-dimensional Lebesgue measure on the
flow lines of the geodesic flow. We denote moreover by Vi (resp. Ag)
the gradient (resp. Laplacian) of a function 1 on the smooth Rieman-
nian manifold (W*(v), g°).

Let € > 0 and choose a smooth function ¢ on 7'M with [ ¢*dp =1
in such a way that

o= [$a(9) +Y(@)+ 9l div(Y) + VI dn 2 e

Denote again by ¢ the restriction to W*(v) of the lift of ¢ to T*M, and
choose ¢ > 0 sufficiently large that |Y'|| + |3 div(Y) + ||Y]|?|(w) < ¢ and

[V @)+ (LY DAY @) 6715 div(¥) IV I (w) < o

for every w € T' M. 5

Let Y be the lift of ¥ to T"M, and let f be a positive function on
W*(v) which satisfies V1og f = Y |wa(,). Then f is a function of class
C?, and |V f|| + |A(f)| < ¢f pointwise on W*(v).

Let B, D B; be compact balls of radius 7 > r; > 0 about v in
W**(v), whose boundaries have measure zero with respect to n** and
such that

fPdn* < (1+¢€/2¢) | f*dn™.
Bs B
We then may renormalize f in such a way that [ f? dn’* = 1.

Choose a smooth ®*-invariant function p on W?¥(v) with values in
[0,1] and such that p(w) = 0 for w € W**(v) — B, and p(w) = 1 for
w € B,;. Since p is ®!-invariant, there is then a number £, > 0 such
that |Asp(w)| < 1 and ||Vp(w)|| <1 for every w € |J 27W?*(v). By

t>to
Proposition 4.1 there is a number ¢; > £, such that for every ¢ > ¢, the
following are satisfied:

L. (65)(8(8) +2V1og £,V9) + ¢ldiv(Vlog £) + [V log /|]) dX*

(1) = [ @naep iz [ farte-g=a-e
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) / 2 AN < efe,
Q—‘(Bz—Bl)
3) / G252 dA > (1467
‘}_‘Bl
The support of the function p¢f is contained in |J ®‘B, and
tER

(081Dt ))] <F(18% 02 (0)] + AV RISV + 17 147)
P (HAW) + V(@) + 6 | 5 div(D) + FIFI7))

and consequently |(pdf)A(pdf)| < cf? on Uisy, @~tW**(v). Thus for
t > t; we obtain

[ (etDA(pD) dr
P-tWss(v)
) > [ @naenae- | of? A\

Q—'(Bz—Bl)
> o — 2e.

Choose a smooth function £: R — [0,1] such that £(t) = 0 for
t <0, &t) =1fort > 1. For an integer £ > 0, define functions
ErCh: W2 (v) = [0,1] by &(®*w) = é(—t—k) and (o(2tw) = E(k+1+1)
for w € W*(v) and ¢t € R. Then the norms of the gradients of &, (s
and the absolute values of A (&), A((x) are pointwise uniformly bounded
independent of £ > 0.

From the above estimates and Proposition 4.1 it then follows:

(5) There is a number A > 0 such that
o (phfGEIAperGE) AN 1< A
d-tWss(v)

for all 7,k > 0 and all £t > ¢;.

Choose an integer m > 2A/¢, let k > t; +1 and define a function ¢ on
Ws(v) by ¥ = &xCnarpdf. Then 1) is a smooth function with compact
support, and [y, () ¥(AY) dA* = a; + az + a3 where

|a1| = |fU:$k<I>“W“(v) ¢(A¢) dAs‘ < Aa
a; = fuf::lq,_,w,s(v) PY(AY) dX* > m(a, —3¢) and
|a3| = ‘fUtZk+m(I)—tWaa(v) 1/)(A1/)) dAS S A.

Together we obtain that [¢¥(Avy) dA* > m(e, — 4¢), in particular a, —
4e < 0.
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On the other hand we have
/¢2 A > / S dA2 > m(l 467,
uttmg-tB
and consequently

/¢(A¢) aw//zp? AN > (a — 4e)(1 +€).

Thus also —dy > (o, — 4€)(1 + €), which implies that —§, > «, since
€ > 0 was arbitrary.

The next lemma then shows that a, = —d, for every measure 7 as
above:

Lemma 4.3. —d¢ < o, for every measure 1 induced as above by the
Gibbs-equilibrium state of a Holder continuous function on T'M.

Proof. If suffices to construct a function ¢ on T* M of class C? such
that [ ¢* dn = 1 and [ $(A%($) + Y(@) + 9L div(Y) + 2V |]) dn >
—dp — ¢ for every € > 0. 3

For this we recall that —dy equals the top of the Lz:spectrum of M,
and hence for ¢ > 0 there is a compact ball B in M and a smooth
function 0 # f on M with support in B such that

= [ 1805 dri < G+ o) [ £ driy

where );; is the Lebesgue measure on M.

Recall that every leaf of the stable foliation of T M projects diffeo-
morphically onto M.

Let II: 7'M — T'M be the canonical projection. If v € T M is such
that TIW*(v) does not contain a periodic orbit of the geodesic flow, then
the restriction of II to W*(v) is injective. This implies that we can find
a vector v € T'M with P(v) € B, an open neighborhood A of v in
W*(v), an open neighborhood D of v in W**(v) and a homeomorphism
A of Ax D onto an open neighborhood C of v in T* M with the following
properties:

1) A(w,v) = w for every w € A.
2) A(v,z) = z for every z € D.
3) A(A x {z}) is contained in W?(z) for every z € D and
PA(A x {z}) D B.
4) A({w} x D) is contained in W**(w) for every w € A.
5) The restriction of II to C is a diffeomorphism into 7" M.
Recall that the measures n°* on the leaves of the strong unstable

foliation induce a nonzero measure n” on D. Denote again by \° the
family of Lebesgue measures on the manifolds A x {z} C'A x D induced
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via A from the Lebesgue measures on the leaves of the stable foliation.
Let p be the measure on A x D defined by dp = d\* x dp”. Then A
is absolutely continuous with respect to the measure p on A x D and
the measure 7 on C. The square root a of the Jacobian of A with
respect to these measures is Holder continuous. If Y denotes the lift
of the vector field Y to T'M, then a0 A~! is of class C? on C and
Velog(ao A™Y) = 1Y,

Choose a smooth function 1 on D with compact support and values
in [0,1] such that ¢(v) = 1. Define a function ¢ on C by ¢(A(w,2)) =
Y(z)a (w, z)f(P(A(w, z))). Then ¢ is a function on C' with compact
support and hence induces a function ¢ on 7" M with compact support
in II(C). Moreover ¢ is of class C2.

Write @ = ao A~! and f = f o P; then

x= [HE @ +Y @ +Flz div(V) + 1Y) dn

= [ (%) + T(9) + 4l div(¥) + IV I dn
Ax( Na[as(Fa) o A+ F(Fa) oA
+ (Fo Mo (3 div(P) + ZIVI) o Ao A x dn”.

Now V?loga = %f’ and consequently we obtain from the above formula
that

x= [ (FoNA*(F)o A2 dx* x dr”
AxD
> (_‘(50 — 6)/ (?O A)2’(/)2 d\ % an/
AxB
by the choice of 7. But clearly
/52 di = / (F o A)*4? dr® x dn®
AxD

and therefore o, > —d, — € by the definition of «,. Since € > 0 was
arbitrary, the lemma follows.

Recall that the Lebesgue Liouville measure A on 7'M is the Gibbs
equilibrium state of the Holder continuous function v — tr U(v) where
tr U(v) is the trace of the second fundamental form at Pv of the hor-
sphere PW*%(v). Denote the g°-gradient of A by Z. Then we have:

Lemma 4.4. The differential operator L = A*+Z+1 div(Z)+1||Z|)?
is self-adjoint with respect to A\, and the top of its spectrum equals dq.
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Proof. Since Z is the g°-gradient of A, the operator L is self-adjoint
with respect to A by Corollary 2.6 of [12].

Let AY be the leafwise Laplacean of the vertical foliation, i.e., for a
smooth function f on 7'M and every v € T'M the evaluation of A?
on f at v is obtained by restricting f to the fibre 775, M of the fibration
T'M — M through v and evaluating the Laplacean of the round sphere
T}, M on this restriction. Then A" is a second order differential operator
on T'M with smooth coefficients, which is subordinate to the vertical
foliation and leafwise elliptic. Moreover AY is self-adjoint with respect
to the invariant measure J, i.e., for smooth functions f,¢ on T'M we
have [ f(AY@) d\ = [¢(AYf) d\ = — [(Vf,V¢) d\ where V" f is the
section of the vertical bundle T whose restriction to a fibre TI}M equals
the gradient of the restriction of f to the (totally geodesic) submanifold
T, M of T'M, and by abuse of notation (,) is the natural Riemannian
metric on 7.

Since the vertical foliation and the stable foliation of T M are transver-
sal, for every ¢ > 0 the operator L, = L + €A" is elliptic and moreover
self-adjoint with respect to A. In particular the spectrum of L. is a
pure point spectrum, and its top is an eigenvalue a, whose correspond-
ing eigenspace is one-dimensional and spanned by a positive function
fe: T'M — (0,00) of class C%. We assume f. to be normalized in such
a way that [ f. d\ = 1. First we note:

Lemma 4.5. lim,_,q o, = —dg.

Proof. Let Q. be the quadratic form on the space of smooth functions
on T M associated to L.; for every smooth function ¢ on T'M we have

Qud) = [ $(Lep) dr = [4(z4) ar—c [IV9I ar,

and consequently Q. > @Q; for € < §. Now the space of smooth functions
on T'M is a form core for the quadratic form @ defined by L; since
Q. — Qo(e — 0) on this form core, the operators L, converge as e — 0
in the strong resolvent sense to L (see [6]).

This implies in particular that lim,_,y o, = —6.

Lemma 4.6. Let n be a weak limit of the measures f\ on T'M as
€ — 0. Then n is a harmonic measure for the operator L + dg.

Proof. Let ¢ be a smooth function on T'M; then ¢ and Av¢ are
continuous. Hence [e(Av¢)f. d\ — 0 and

(a€+60)/¢f€ d\ = 0 (e — 0)

by Lemma 4.5. Let {¢;}; be a sequence such that ¢, — 0 and that the
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measures f., A converge weakly as i — oo to a measure 1. We then have

[+ b dn = lim [(L+ )41, A

=Hm/ﬂL+qA”—mJﬂﬁdA

i—00

= 1_1)1’[1 ¢(L€i - a‘i)(fei) dX = 0,
since L., is self-adjoint with respect to A. This shows the lemma.
Corollary 4.7. Let 1 be as in Lemma 4.6, and let { be the section
of TW* such that { + 3Z is the g°-gradient of n. Then

div(¢) + [I¢]* + & = 0.

Proof. Let v € T'M and let f be a function on W*(v) such that
Vélog f = 32 |ws(v) - For a smooth function ¢ on W*(v) with compact
support we then have f *A*(f¢) = A%(¢)+Z(d)+df 1A(f) = Lo, and
hence the formal adjoint L* of Ly,.,,, is given by L*(¢) = fA*(f~'4).
In other words, if L*(¢) = —do¢, then f~'¢ is a solution of A*(f~1¢) =
—0of 7.

From this and Lemma 2.2 of [12] the corollary follows.

5. Pressure computation

In this section we use the results in Section 4 to prove the second
part of Theorem B and Theorem C. For this we continue to use the
assumptions and notation of Sections 1-4. Recall in particular that we
denoted the pressure of the functions 2(X, &) for € € (0, ] by g(e) < 0.
Our theorem will be a consequence of the fact that lim,_,; g(e) = 0. As
in Section 4 let Ly = A® + Z + % div(Z) + 1/|Z]* + 6A®, and let fs
be an eigenfunction of Ls; with respect to the largest eigenvalue a;. In
contrast to Section 4 however we assume now that f5 is normalized in
such a way that [ f2d\ = 1. Then we have:

Lemma 5.1. Let v be a weak limit of the measures fZ\ on T*M as
& — 0. Then the following are satisfied:

i) The vector fields & converge as € — 0 in the Hilbert space of
sections of TW* over T*M, which are square integrable with
respect to v to a section & of TW?*.

ii) div(¢) + |€]|? + do = O almost everywhere on (T*M,v).

iii) v is a self-adjoint harmonic measure for A® + 2¢.
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iv) Every v-measurable section ( of TW*® over T* M, which satisfies
div(¢) + [I]|® + 8o < 0 almost everywhere, coincides with &.

Proof.  Let {4;}; be a sequence such that §; — 0 (i = o0) and
that the measures f A converge as i — oo weakly to a measure v. For
t > 0 write f; = f5,,c; = a5, and Q; = V7log f; + %Z. The differential
equation for f; then yields

(1) div(Q;) + 1Q:ll* — eu + 8: /7 AY(f:) = 0,
and consequently
(2)  div(e — Q) = IQill* — €l — 6o + € — o + 8:f T A" (f2)

for every e > 0. Since f2) is a self-adjoint harmonic measure for A*+2Q;
(see [12]), integration of equation (2) shows

0= [ (@iviE - Q) + 2@ & - QU)F? d
= [(ll&~ QuIP = b+ € — s = BIIVVlog £il1) 77 A,

since [(fT'AY(f:))f2 d\ = — [||V*log fil|2f? d) by self-adjointness of
A®. From this we obtain

(3) limsup [ [|& — Qi f2 dA < e.

i—co
Since the above equation is valid for every ¢ > 0 we further conclude
that

(4) limsup &; [ ||[V* log fi||2f2 dX = 0.

i— 00

Now by the definition of v we have
[ lec= el av = lim [ l1&, - &7 @x
<timsup2( [ & - Qs dx+ [ llgs = QullPf2 Y

10

=2¢+ 26

by the above estimates for all €,§ > 0. Hence for every sequence {€;};>0
with €; = 0 (j = oo) the vector fields {£,}; form a Cauchy sequence
in the Hilbert space H. of sections of TW? over T*M, which are square
integrable with respect to v. In other words, there is a section { € H
such that £ — £ (6 — 0) in H which yields i) above.
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Next we want to show that v is a self-adjoint harmonic measure for
A% 4+ 2¢, and for this it is sufficient to show that

/ (div(Y) + (2¢,Y)) dv = 0

for every section Y of TW* of class C}. Let Y be a section of TW* of
class C} and let € > 0; since &; — £ in # there is a number § < € such
that

5) | [, Y) dv— [t Y) dvi<e.

Now the functions (2¢5,Y) and div(Y) are continuous on T*M and the
measures fZ\ converge as ¢ — oo weakly to v. This means that we can
find a number 7, > 0 such that

®) 1 [(@v() + (26, Y) v~ [(@v() + 26, VDS d <

for all ¢ > 4. On the other hand, by (4) above we may further assume
that

(7) | ‘Si/fiAv(fi) dX\—a; —dg |[< €

for all ¢ > 43. The equation preceding (3) then implies that
J 1€ — Qill>f2 dX < 2€ so that

(8) | / (265, Y)f2 d\ — / (2Q;,Y) 2 dX |< 2cV2,

where ¢ = max{||Y|[(v) |v € T*M}.
Since f? d)\ is a self-adjoint harmonic measure for A® + 2Q);, integra-
tion and (6), (7), (8) yield

| / (div(Y) + (26, Y))dv | < 2¢ + 2¢V2e+ | / (div(Y) +(2Q;,Y))f? dX |
= 2(e + cV/2e).

Since € > 0 was arbitrary we obtain that indeed

/ (div(Y) + (2¢,Y)) dv = 0,

and hence iii).

Now v is a self-adjoint harmonic measure for a leafwise elliptic second
order differential operator subordinate to W?, and hence v is absolutely
continuous with respect to the stable and strong unstable foliation, with
conditionals on stable manifolds in the Lebesgue measure class. But
this means that for v-almost every v € T* M the restriction of the vector
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fields &; to the open ball B of radius 1 about v in W*(v) converge almost
everywhere pointwise with respect to the Lebesgue measure A* on W*(v)
to the restriction of £ by i) above, and ||&;]|> — ||£]|* almost everywhere
pointwise on (W*(v),A*) as well. But div(§s) + ||€sl]* + 0o — 0 = 0
and consequently via partial integration we obtain that div(¢) + [|€]|* +
do = 0 on B in the sense of distributions. Regularity theory for elliptic
equations then implies that in fact the restriction of £ to B is a strong
solution of div(£) + ||€]|* + & = 0 and hence div(£) + ||E}2 + do = O
almost everywhere with respect to v.

We are left with statement iv) in the lemma. For this let x be any v-
measurable square integrable section of TW* over T' M, which satisfies
div(x) + |lx}]? + do < 0 almost everywhere with respect to v. As before
we then have

0> [(ivix &) + Il = el®) dv
= [ =) +Ixl - i) dv
= [ e =i av,

since v is a self-adjoint harmonic measure for A® 4+ 2£. Hence £ = x
almost everywhere.

By Lemma 5.1 iii) the measure v is harmonic for the leafwise elliptic
differential operator A® 4 2¢. Therefore by the result of Garnett [8] we
can write dv = dA° X dv** where v°* is a family of locally finite Borel-
measures on the leaves of W**, which are absolutely continuous under
canonical maps, and where A° is the family of Lebesgue measures on
the leaves of W for all € > 0.

In other words, the measures ** induce a m; (M)-invariant measure
class v(oo) on M. This measure class has the properties mentioned in
Theorem C: )

Corollary 5.2. For every z € M and v(co)-almost every ( € M
the functions y — K.(z,y,() converge as ¢ — 0 uniformly on compact
subsets of M to a minimal positive Ag-harmonic function.

Proof. Let ¥ be the lift of v to a locally finite measure on T*M, and
let £ be the lift of £. Then Lemma 5.1 implies that for ¥-almost every
v € T'M the functions y — K (z,y,n(v)) converge as ¢ — 0 uniformly
on compact subsets of M to a positive Ag-harmonic function f*. The
gradient of log f? is just the projection to M of the restriction of £ to
We(v).

We are left with showing that for #-almost every v € T'M the func-
tion fV is in fact minimal Ay-harmonic. Since for every smooth function
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¢ on M we have
T A(DFY) + dogp = A() +2(V Iog f*, V),

this is equivalent to saying that every bounded A + 2V log f*-harmonic
function on M is constant. Now v is a self-adjoint harmonic measure for
A® + 2¢, and hence the Kaimanovich-entropy of the diffusion on T* M
induced by (A® + 2¢,v) vanishes (see [12], [15]). But this just means
that v-almost every leaf of W* is Liouville with respect to A®+2¢, which
yields the corollary.

Consider now again the measures »** on the leaves of the strong
unstable foliation. The arguments in the proof of Lemma 3.5 then show
that there is a number ¢ > 0 such that v**(B*%(v,1)) € [c™!, ] for all
v € T'M, where B%(v,d) denotes the open ball of radius § > 0 about
v in the manifold W¢(v) equipped with the metric g which is induced
from the Riemannian metric on M (i = s, su, ss).

Recall that the unique Gibbs equilibrium state v, of the function
2(X, &) admits a family v% of conditional measures on strong unstable
manifolds such that £1:0®* |,_o= 2(X, &) +¢(€). By the arguments in
the proof of Lemma 2.7 we have v*%(B%*(v,1)) € [c},c] forallv € T'M
independent of . Let F: v — —v be the flip on T* M and define for ¢ > 0
a measure v on the leaves of W* by dv? = dt x dv?® where v?* = v{*oF.
Clearly there is a number a > 0 such that v¥(B*(v,1)) € [a™?, a] for all
v € T'M and all € € (0,8]. Thus we obtain a finite Borel measure
o, on T'M by defining do, = dvf x dv*® which we may assume to
be normalized in such a way that o (T*M) = 1 for all ¢ > 0. Then
the section & of TW* over T'M is contained in the Hilbert space of
sections which are square integrable with respect to o, for all € > 0, with
Hilbert norm bounded independent of €. Moreover a is quasi-invariant
under the action of the geodesic flow, and we have L0, 0 ®* |, (v) =

2X, &) (v) —2(X,&.)(—v) — g(e) where as before g(e) < 0 is the pressure
of the function 2(X,&.) on T* M.

Lemma 5.3. For every 6 > 0 there is a number €(6) > 0 such that
Jliéc — €ldoe < 6 for all € < €(9).

Proof. Recall that the vector fields £,,£ are pointwise uniformly
bounded in norm, independent of e. Lemma 5.1 together with the pre-
compactness of the space of positive locally bounded A,-harmonic func-
tions on M then implies the following: Let 7°* be the lift of the mea-
sures v** to the leaves of W** C T*M. Then for every v € T'M and
**-almost every w € W**(v) the restriction of £, to W*(w) converges
uniformly on compact sets to the restriction of &.

Let C C T'*M be a set with a local product structure, given by a
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vector v € T'M , a compact ball B C W**(v) about v, a compact ball
A C W?(v) about v and a homeomorphism A: A x B — C such that
Alw,z) € W*(z) N W*¥(w) as in the proof of Lemma 4.3. We assume
that the projection of C to T*M is surjective.

Since C' can be covered by a finite number of fundamental domains
for the action of m, (M) on T M, there is a number c, > 0 such that
0.(C) < ¢o for all € € (0, 6y, where we denote the lift of o, to T'M again
by .. By the infinitesimal Harnack inequality we can further choose a
number m > 0 such that ||¢[[*(v) and [|€]|?(v) is not larger than m for
all v € T'M and all € € (0, ).

Let 6 > 0 be given. By the properties of the measures v¢ there is then
a number p > 0 such that o, (A(A x E)) < §/8m whenever E C B is
Borel and #°%(E) < p. On the other hand, for 7*“-almost every w € B
the sections &, converge on A(A x {w}) uniformly to £ as e — 0; hence
there is a number €(8) > 0 such that o**(E) < p where £ = {w € B |
l€& — EIIP(A(z,w)) > 6/2¢; for some z€ A and e < €(d)}.

For € < €(6) we then have

[ e = élPdo < [ e - elPas,

= [l -glPdo.+ [ lé. - €ldo.
A(AXE) A(Ax(B—E))
<4mo (A(A x E)) + 0. (A(A X B))d§/2¢co <6

by the above. This shows the lemma.

Corollary 5.4. ¢(0) = lim,_, ¢(¢) = 0.

Proof. Assume to the contrary that ¢(0) = lim,_,¢(€) < 0; recall
that g(e) < ¢(0) for every € > 0. By Lemma 5.3 we then can find a
number e > 0 such that [ ||£ —£|?do. < {+¢(0)*. Since the norm of the
geodesic spray X is constant 1, from this it follows that

| [ e - eadocis [ e - &ldo < ([ N - edPdo)? < - 5a(0)

But L0, 0 ®* |,o= 2(X, £ — £.) — g(€) and consequently

0= %05 o ®! |, doe = /2(Xa€ —&doe —q(e) > —%q(O)

by the above estimates, a contradiction to our assumption ¢(0) < 0.
Hence the corollary is proved.
As a corollary we obtain the second part of Theorem B.
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Corollary 5.5.
1) There is a number ¢ > 0 such that [s, py Go(p,y)*dApr(y) < c

forallpe M, sl R> 1.
2) liminfr oo f5(,, m) Go(P, y)2¢d), g = 0o for every € > 0.

Proof.  Statement 1) follows from the arguments in the proof of
Corollary 3.6. To show 2) let € > 0; by the first part of Theorem B there
is then a number a > 0 such that Go(p,y)*~ > a~le 9=tV Gy(p, y)?
for all y,p € M with dist(p,y) > 1. Choose now ¢ > 0 sufficiently small
that g(€) > —a/2; such a number exists by Corollary 5.3. The Harnack-
inequality at infinity of Ancona for the operator A, implies that there
is a number ¢(e) > 0 such that [, z) Ge(p, y)2e 1RGN, £ (y) > c(e) for
all R > 1. But the maximum principle yields that Go(p,y) > €G.(p,y)
for all p,y € M with dist(p,y) > 1, where € > 0 is a universal constant.
Hence

| Golp g D) 207 [ Gulp,yf e dAn(y)
S(p,R) S(p,R)

>atec(e)e* R/

for all R > 1, and the corollary is proved.
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