HARMONIC MEASURES, HAUSDORFF MEASURES AND POSITIVE EIGENFUNCTIONS

URSULA HAMENSTÄDT

Abstract

Let M be a compact negatively curved Riemannian manifold with universal covering \tilde{M} , and let $\delta_0>0$ be the negative of the bottom of the positive spectrum of the Laplacean Δ on \tilde{M} . We use methods from ergodic theory to show that $\Delta+\delta_0$ admits a Green's function which decays exponentially with the distance. Moreover for almost every point $\zeta\in\partial\tilde{M}$ with respect to a suitable Borel-measure which is positive on open sets, the unique minimal positive $\Delta+\delta_0-\epsilon$ -harmonic functions on \tilde{M} with pole at ζ normalized at a point $x\in\tilde{M}$ converge as $\epsilon\to 0$ uniformly on compact sets to a minimal positive $\Delta+\delta_0$ -harmonic function.

1. Introduction

Let M be an n-dimensional compact manifold of negative sectional curvature, and let \tilde{M} be its universal covering. For every $x \in \tilde{M}$ the harmonic measure ω^x at x is a Borel-probability measure on the ideal boundary $\partial \tilde{M}$ of \tilde{M} , which via the canonical identification can be viewed as a measure on the fibre $T^1_x\tilde{M}$ at x of the unit tangent bundle $T^1\tilde{M}$ of \tilde{M} .

Let Γ be the fundamental group of M acting as a group of isometries on \tilde{M} and $T^1\tilde{M}$. For $\Psi \in \Gamma$ we then have $\omega^{\Psi x} = \omega^x \circ (d\Psi)^{-1}$, and hence the measures ω^x can be transported to measures on the fibres of the unit tangent bundle T^1M of M.

Denote by DTM (resp. $DT\tilde{M}$) the smooth fibre bundle over M (resp. \tilde{M}) whose fibre DTM_x at $x \in M$ (resp. $DT\tilde{M}_x$ at $x \in \tilde{M}$) equals $T_x^1M \times T_x^1M$ (resp. $T_x^1\tilde{M} \times T_x^1\tilde{M}$). We call a function β on DTM symmetric if β is invariant under the natural involution $(v, w) \to (w, v)$. In Section 2 of this note we show:

Received May 8, 1995.

¹⁹⁹¹ Mathematics Subject Classification. 58F17, 58G03.

Theorem A. There is a Hölder-continuous symmetric function $\delta \colon DTM \to [0, \infty)$ with the following properties:

- 1) There is a number $\kappa > 0$ such that for every $x \in M$ the restriction of δ^{κ} to DTM_x is a quasi-distance on T_x^1M defining the usual topology.
- 2) For every $x \in M$ the measure ω^x is the $1/\kappa$ -dimensional spherical measure on T_x^1M induced by δ^{κ} .

Denote by Δ the Laplacean on \tilde{M} , and let $\delta_0 > 0$ be the negative of the bottom of the positive spectrum of Δ on \tilde{M} , which equals the top of the spectrum of Δ acting on square-integrable functions on \tilde{M} (see [21]). For every $\epsilon > 0$ the differential operator $\Delta_{\epsilon} = \Delta + \delta_0 - \epsilon$ is weakly coercive in the sense of Ancona [1], and hence the Martin boundary of Δ_{ϵ} can naturally be identified with the ideal boundary $\partial \tilde{M}$ of \tilde{M} (see [1]). In other words, Δ_{ϵ} admits a Green's function G_{ϵ} on $\tilde{M} \times \tilde{M} - \{(x,x) \mid x \in \tilde{M}\}$, and the Martin kernel K_{ϵ} of Δ_{ϵ} is a Hölder-continuous function on $\tilde{M} \times \tilde{M} \times \partial \tilde{M}$ such that for every $x \in \tilde{M}$ and every $\zeta \in \partial \tilde{M}$ the assignment $y \to K_{\epsilon}(x,y,\zeta)$ is the unique minimal positive Δ_{ϵ} -harmonic function on \tilde{M} with pole at ζ , which is normalized to be 1 at x. Since Δ_{ϵ} is in fact coercive the results of Ancona imply that there are numbers $c_{\epsilon} > 0$, $\chi_{\epsilon} > 0$ such that $G_{\epsilon}(x,y) \leq c_{\epsilon}e^{-\chi_{\epsilon}\operatorname{dist}(x,y)}$ whenever the distance $\operatorname{dist}(x,y)$ of $x,y \in \tilde{M}$ is not smaller than 1.

The operator $\Delta_0 = \Delta + \delta_0$ fails to be weakly coercive in the sense of Ancona. In fact, Ancona gave an example of a simply connected manifold \tilde{N}_1 of bounded negative curvature for which Δ_0 does not even admit a Green's function [2]. Ancona also constructed a simply connected manifold \tilde{N}_2 of bounded negative curvature such that Δ_0 admits a Green's function, but the Martin boundary of Δ_0 consists of a unique point. However, under our assumption that \tilde{M} is the universal covering of a compact manifold, these cases can not occur. More precisely, we denote for $p \in \tilde{M}$ and R > 0 by S(p, R) the distance sphere of radius R about p in \tilde{M} , and let $\lambda_{p,R}$ be the Lebesgue measure on S(p,R) induced by the restriction of the Riemannian metric on \tilde{M} to S(p,R). In Section 3 and Section 5 we show

Theorem B. Assume that \tilde{M} is the universal covering of a compact manifold M. Then the operator $\Delta + \delta_0$ admits a Green's function G_0 with the following properties:

- 1) There are constants $a > 0, \chi > 0$ such that $G_0(x, y) \leq ae^{-\chi \operatorname{dist}(x, y)}$ for all $x, y \in \tilde{M}$ with $\operatorname{dist}(x, y) \geq 1$.
- 2) There is a number c > 0 such that $\int_{S(p,R)} G_0(p,y)^2 d\lambda_{p,R}(y) \leq c$ for all $p \in \tilde{M}, R \geq 1$.
- 3) $\liminf_{R\to\infty} \int_{S(p,R)} G_0(p,y)^{2-\epsilon} d\lambda_{p,R}(y) = \infty$ for every $\epsilon > 0$.

Moreover we obtain in Section 5:

Theorem C. There is a $\pi_1(M)$ -invariant measure class $\nu(\infty)$ on $\partial \tilde{M}$ such that for $\nu(\infty)$ -almost every $\zeta \in \partial \tilde{M}$ and every $x \in \tilde{M}$ the functions $y \to K_{\epsilon}(x, y, \zeta)$ converge as $\epsilon \to 0$ uniformly on compact subsets of \tilde{M} to a minimal positive Δ_0 -harmonic function on \tilde{M} .

Recall that δ_0 equals the infimum of the Rayleigh-quotients $\int \|\nabla\phi\|^2 dx/\int \phi^2 dx$ over all nontrivial smooth functions ϕ on \tilde{M} with compact support. However δ_0 can also be expressed via a variational equation on the unit tangent bundle T^1M of M. For its formulation recall that the geodesic flow Φ^t is a smooth dynamical system on T^1M , generated by the geodesic spray X. There is a Hölder-continuous Φ^t -invariant decomposition $TT^1M = \mathbb{R}X \oplus TW^{ss} \oplus TW^{su}$ where TW^{ss} (resp. TW^{su}) is the tangent bundle of the strong stable foliation W^{ss} (resp. the strong unstable foliation W^{su}). The leaves of the stable foliation W^s with tangent bundle $TW^s = \mathbb{R}X \oplus TW^{ss}$ are smoothly immersed submanifolds of T^1M which are mapped by the canonical projection $P: T^1M \to M$ locally diffeomorphically onto M. Thus the Riemannian metric on M induces a Riemannian metric g^s on TW^s and a family λ^s of Lebesgue measures on the leaves of W^s . Write also \langle , \rangle instead of g^s .

The stable Laplacean Δ^s is a second order differential operator on T^1M with Hölder continuous coefficients. For a smooth function ϕ on T^1M the value of $\Delta^s\phi$ at $v\in T^1M$ just equals the value at v of the Laplacean of the Riemannian manifold $(W^s(v),g^s)$ applied to the restriction of ϕ to the leaf $W^s(v)$ of W^s through v. Moreover denote the gradient of $\phi|(W^s(v),g^s)$ at v by $(\nabla^s\phi)(v)\in T_vW^s$.

Let η be a Borel-probability measure on T^1M which is absolutely continuous with respect to the stable and strong unstable foliation, with conditionals on stable manifolds in the Lebesgue measure class. Recall from [12] the definition of the g^s - gradient of η (if this exists). It is the unique section Y of TW^s which satisfies

$$\int \phi(\Delta^s + Y)(\psi) \ d\eta = \int \psi(\Delta^s + Y)(\phi) \ d\eta$$

for all smooth functions ϕ, ψ on T^1M .

Call a section Z of TW^s of class $C^{1,\alpha}_s$ for some $\alpha>0$ if Z is Hölder-continuous of class α and differentiable along the leaves of the stable foliation, with leafwise first order jets of class C^{α} . If Z is of class $C^{1,\alpha}_s$, then for every $v\in T^1M$ the divergence div Z(v) of $Z|(W^s(v),\lambda^s)$ is defined at v and the assignment $v\to {\rm div}\ Z(v)$ is of class C^{α} .

With thise notation in Section 4 of this note we show

Theorem D. Let η be a Borel-probability measure on T^1M , which is absolutely continuous with respect to the stable and unstable foliations, with conditionals on stable manifolds in the Lebesgue measure class. Assume that the g^s -gradient Y of η is of class $C_s^{1,\alpha}$ for some $\alpha > 0$. Then

$$\begin{split} -\delta_0 &= \sup \{ \int \! \phi(\Delta^s(\phi) + Y(\phi) + \phi[\frac{1}{2}\operatorname{div}(Y) + \frac{1}{4}\|Y\|^2]) \ d\eta \mid \\ \phi &\in C^\infty(T^1M), \int \phi^2 \ d\eta = 1 \}. \end{split}$$

As a corollary, we find a new proof of a result of Ledrappier; namely, let σ be the unique Borel-probability measure on T^1M such that $\int (\Delta^s \phi) \ d\sigma = 0$ for every smooth function ϕ on T^1M (see [18], [12]). The g^s -gradient Y of σ satisfies div $(Y) = -\|Y\|^2$, and $\int \|Y\|^2 \ d\sigma$ equals the Kaimanovich-entropy h_K of the Brownian motion on \tilde{M} . In [19] Ledrappier showed:

Corollary. $\delta_0 \leq \frac{1}{4}h_K$ with equality if and only if M is asymptotically harmonic and hence locally symmetric.

Proof. Using the constant function 1 in Theorem D we obtain $-\delta_0 \ge -\frac{1}{4}h_K$. Assume that the equality holds and let ϕ be a smooth function on T^1M with $\int \phi \ d\sigma = 0$. Then

$$\frac{d}{dt} \int (1+t\phi) [\Delta^s(t\phi) + Y(t\phi) - (1+t\phi) \frac{1}{4} ||Y||^2] d\sigma \mid_{t=0}$$

$$= \int (\Delta^s(\phi) + Y(\phi) - \frac{1}{2}\phi ||Y||^2) d\sigma = -\frac{1}{2} \int \phi ||Y||^2 d\sigma,$$

since σ is a harmonic measure for $\Delta^s + Y$. But t = 0 is a maximum for the assignment

$$t \to \frac{\int (1+t\phi)[\Delta^s(t\phi) + Y(t\phi) - (1+t\phi)\frac{1}{4}||Y||^2] \ d\sigma}{\int (t^2\phi^2 + 1) \ d\sigma},$$

and hence the differentiation at t=0 yields $0=-\frac{1}{2}\int \phi ||Y||^2 d\sigma$. Since ϕ was arbitrarily chosen such that $\int \phi d\sigma = 0$, we conclude that $||Y||^2 \equiv h_K$.

Now write $Y = \langle X, Y \rangle X + Y^{ss}$ where Y^{ss} is a section of TW^{ss} . Let μ be the Bowen-Margulis measure on T^1M , i.e., the unique Φ^t -invariant Borel-probability measure whose entropy equals the topological entropy h of the geodesic flow. Since the pressure of the function $\langle X, Y \rangle$ vanishes [16] we have

$$h \le \int \langle X, Y \rangle \ d\mu \le (\int |\langle X, Y \rangle|^2 \ d\mu)^{1/2} \le (\int ||Y||^2 \ d\mu)^{1/2} = h_K^{1/2}$$

with equality if and only if $Y^{ss} \equiv 0$. But $h_K \leq h^2$ [16], and hence $Y = \sqrt{h_K}X$. Thus $\operatorname{div}(X) \equiv -\sqrt{h_K}$ implying that the mean curvature of the horospheres in \tilde{M} is constant, i.e., that M is asymptotically harmonic.

By the results of Benoist, Foulon, Labourie, Besson, Courtois, Gallot [7], [4], [5], the manifold M is therefore in fact locally symmetric.

Let now Z be the g^s -gradient of the Lebesgue-Liouville measure λ on T^1M . In the same way as above we obtain that $\delta_0 \leq \int \frac{1}{4} ||Z||^2 d\lambda$ with equality if and only if M is locally symmetric.

Let $P: T^1\tilde{M} \to \tilde{M}$ be the canonical projection. For every $x \in \tilde{M}$ the restriction π_x of the natural projection $\pi: T^1\tilde{M} \to \partial \tilde{M}$ to $T^1_x\tilde{M}$ is a homeomorphism. For $v \in T^1\tilde{M}$, denote moreover by θ_v the Busemann function at $\pi(v)$ which is normalized by $\theta_v(Pv) = 0$.

2. Harmonic Gromov - distances

For $\epsilon > 0$, again let $K_{\epsilon} : \tilde{M} \times \tilde{M} \times \partial \tilde{M} \to (0, \infty)$ be the Martin kernel of the operator $\Delta_{\epsilon} = \Delta + \delta_0 - \epsilon$. Recall that T^1M (resp. $T^1\tilde{M}$) admits a natural embedding into DTM (resp. $DT\tilde{M}$) by mapping $v \in T^1M$ (resp. $v \in T^1\tilde{M}$) to the element (v,v) of the diagonal in DTM (resp. $DT\tilde{M}$). With the notation from the introduction we then have:

Lemma 2.1. For every $p \in \tilde{M}$ and $v \neq w \in T_p^1 \tilde{M}$ the limit

$$eta_{\epsilon}(v,w) = \lim_{y o \pi(v), z o \pi(w)} rac{1}{2} [\log G_{\epsilon}(z,y) - \log G_{\epsilon}(p,y) - \log G_{\epsilon}(z,p)]$$

exists. The function $\beta_{\epsilon} \colon DT\tilde{M} - T^1\tilde{M} \to \mathbb{R}$ is continuous and invariant under the action of $\pi_1(M)$ on $DT\tilde{M}$. Moreover for $(v, w), (z, u) \in DT\tilde{M}$ with $z \in W^s(v), u \in W^s(w)$ we have

$$eta_{\epsilon}(v,w) - eta_{\epsilon}(u,z) = rac{1}{2}[\log K_{\epsilon}(Pv,Pu,\pi(v)) + \log K_{\epsilon}(Pv,Pu,\pi(w))].$$

Proof. By the Harnack inequality at infinity of Ancona and the arguments in the proof of Theorem 6.2 of Anderson-Schoen [3], for fixed $p,y\in \tilde{M}$ the function $z\to \frac{G_{\epsilon}(z,y)}{G_{\epsilon}(p,y)G_{\epsilon}(z,p)}$ has a Hölder continuous extension to the boundary, uniformly in $p,y\in \tilde{M}$. From this we conclude as in [17] that the limit $\beta_{\epsilon}(v,w)$ as above exists and depends continuously on $(v,w)\in DT\tilde{M}$. But also

$$\lim_{y o\zeta}(\log G_\epsilon(p,y)-\log G_\epsilon(q,y))=\log K_\epsilon(q,p,\zeta)$$

and from this we obtain the required formula for $\beta_{\epsilon}(v, w) - \beta_{\epsilon}(u, z)$.

Recall that we have a Hölder continuous foliation DW^s on $DT\tilde{M}$ and DTM with the property that the leaf $DW^s(v,w)$ of DW^s through a point $(v,w) \in DTM$ consists of all points $(u,z) \in DTM$ with $u \in W^s(v)$ and $z \in W^s(w)$. Then the first factor projection $R_1: DTM \to T^1M$ maps the foliation DW^s to the stable foliation. Moreover the natural embedding of T^1M into DTM is an embedding of the foliated space (T^1M, W^s) into the foliated space (DTM, DW^s) .

Recall the definition of the *Gromov products* on $\partial \tilde{M}$ (see [9]); namely for $x \in \tilde{M}$ and $v \neq w \in T_x^1 \tilde{M}$ define

$$(v|w) = \lim_{y \to \pi(v), z \to \pi(w)} \frac{1}{2} (\operatorname{dist}(x, y) + \operatorname{dist}(x, z) - \operatorname{dist}(y, z)).$$

Clearly $(v|w) \geq 0$ for all $(v,w) \in DT\tilde{M}$, (v|w) = 0 if and only if w = -v, and for $(v,w) \in DT\tilde{M} - T^1\tilde{M}$ and $(u,z) \in DW^s(v,w)$ we have $(v|w) - (u|z) = \frac{-1}{2}(\theta_v(Pu) + \theta_w(Pu))$. Now the functions (|) and β_{ϵ} on $DT\tilde{M} - T^1\tilde{M}$ are clearly invariant under the action of $\pi_1(M)$ on $DT\tilde{M} - T^1\tilde{M}$, and hence they project to functions on $DTM - T^1M$ which we denote by the same symbols. These functions can be compared as follows:

Lemma 2.2. There is a number $\alpha > 0$ and for every $\epsilon \in (0, \delta_0]$ there is a number $c_{\epsilon} > 0$ such that $e^{-\alpha\beta_{\epsilon}(v,w)} \geq c_{\epsilon}e^{-(v|w)}$ for all $(v,w) \in DTM - T^1M$.

Proof. Define $A = \{(v, w) \in DTM | \angle(v, -w) \leq \frac{\pi}{2}\}$. Then A is a compact subset of $DTM - T^1M$, and hence by continuity of the functions β_{ϵ} for fixed $\epsilon \in (0, \delta_0]$ there is a number $a_{\epsilon} > 0$ such that $\beta_{\epsilon}(v, w) \leq a_{\epsilon}$ for all $(v, w) \in A$.

Recall that the Riemannian metric on M can be lifted to a metric on the leaves of $DW^s \subset DTM$ in such a way that the norm of the leafwise gradient of the function (|) with respect to this metric is bounded on $DTM - \{T^1M \cup A\}$ pointwise from below by a universal constant b > 0. Moreover by Lemma 2.1 and the Harnack inequalities the norm of the leafwise gradient of β_ϵ with respect to this metric is pointwise uniformly bounded on $DTM - T^1M$ by some constant c > 0 which is independent of $\epsilon \in (0, \delta_0]$. Let now $(v, w) \in DTM - \{A \cup T^1M\}$ and let $\phi \colon [0, \infty) \to DW^s(v, w)$ be the flow line of the gradient flow of the restriction of $-(|\cdot|)$ to $DW^s(v, w)$. Then there is a minimal number $\tau > 0$ such that $\phi(\tau) \in A$ and we can estimate

$$(v|w) \ge \int_0^{ au} \|\phi'(t)\|^2 dt \ge b^2 au.$$

On the other hand, in the same way we see that $\beta_{\epsilon}(v, w) \leq \beta_{\epsilon}(\phi(\tau)) + c\tau$. With $\alpha = b^2/c$ it follows that $\alpha\beta_{\epsilon}(v, w) \leq (v|w) + a_{\epsilon}\alpha$ for all $(v, w) \in$

 $DTM - T^{1}M$. This shows the lemma.

Lemma 2.3. For every $\epsilon \in (0, \delta_0]$ there are numbers $\overline{\alpha}_{\epsilon} > 0, \overline{c}_{\epsilon} > 0$ such that $e^{-(v|w)} \geq \overline{c}_{\epsilon} e^{-\overline{\alpha}_{\epsilon}\beta_{\epsilon}(v,w)}$ for all $(v,w) \in DTM - T^1M$.

Proof. Fix again a number $\epsilon > 0$. The function (|) on $DTM - T^1M$ assumes its minimum 0 precisely on the set $\{(v, -v) \mid v \in T^1M\}$. By compactness and continuity for fixed $\epsilon \in (0, \delta_0]$ there is further a number $a_{\epsilon} > 0$ such that $\beta_{\epsilon}(v, -v) \geq -a_{\epsilon}$ for all $v \in T^1M$.

Let now $(v, w) \in DT^1\tilde{M} - T^1\tilde{M}$ and identify the leaf $DW^s(v, w)$ of DW^s through (v, w) with \tilde{M} via the projection $P \circ R^1$. Write x = Pv and let A be the convex subset of \tilde{M} of all points which lie on a geodesic joining $\pi(v)$ to $\pi(w)$. Denote by y the unique projection of x to A, let $\tau = \operatorname{dist}(x, y) = \operatorname{dist}(x, A)$ and let $z \in T^1_y\tilde{M}$ be such that $\pi(z) = \pi(v)$; then $x \in C(z, \frac{3}{4}\pi) \cap C(-z, \frac{3}{4}\pi)$, where for $u \in T^1\tilde{M}$ and $\gamma \in (0, \pi]$ we denote by $C(u, \gamma)$ the cone of angle γ and direction u in \tilde{M} .

Now the operator Δ_{ϵ} is coercive and hence its Green's function decays exponentially at infinity ([1]). Thus the Harnack inequality at infinity of Ancona together with continuity in v implies that there are numbers $b_{\epsilon} > 0, \alpha_{\epsilon} > 0$ such that $\frac{1}{2}(\log K_{\epsilon}(y, x, \pi(v)) + \log K_{\epsilon}(y, x, \pi(w))) \leq -\alpha_{\epsilon}\tau + b_{\epsilon}$.

This shows that $\beta_{\epsilon}(v,w) \geq \alpha_{\epsilon}\tau - a_{\epsilon} - b_{\epsilon}$. On the other hand, the norm of the gradient of $\frac{1}{2}(\theta_z + \theta_{-z})$ is bounded from above by 1 and consequently we obtain $(v|w) \leq \tau$. Thus $\beta_{\epsilon}(v,w) \geq \alpha_{\epsilon}(v|w) - a_{\epsilon} - b_{\epsilon}$ which implies the lemma.

Recall that $\tilde{M} \times \partial \tilde{M}$ is naturally homeomorphic to the unit tangent bundle $T^1\tilde{M}$ of \tilde{M} by assigning the point $(Pv,\pi(v)) \in \tilde{M} \times \partial \tilde{M}$ to $v \in T^1\tilde{M}$. Thus for $\epsilon > 0$ there is a unique section $\tilde{\xi}_{\epsilon}$ of TW^s over $T^1\tilde{M}$ with the property that for every $v \in T^1\tilde{M}$ the restriction of $\tilde{\xi}_{\epsilon}$ to $W^s(v)$ projects to the gradient of the logarithm of the function $y \to K_{\epsilon}(Pv, y, \pi(v))$. As in Section 3 of [10] we deduce that $\tilde{\xi}_{\epsilon}$ is Hölder continuous. Moreover $\tilde{\xi}_{\epsilon}$ is clearly equivariant under the action of $\pi_1(M)$ and hence projects to a Hölder continuous section ξ_{ϵ} of TW^s over T^1M . In particular the assignment $v \to \langle X, \xi_{\epsilon} \rangle(v)$ is a Hölder continuous function on T^1M .

Let \mathcal{M} be the space of Φ^t -invariant Borel-probability measures on T^1M . \mathcal{M} is a compact convex subset of the dual of the Banach space $C^0(T^1M)$ of continuous functions on T^1M equipped with the weak*-topology. For $\eta \in \mathcal{M}$, denote by h_{η} the entropy of η as a Φ^t -invariant measure on T^1M . Recall that for a continuous function f on T^1M the pressure pr(f) of f is defined by $pr(f) = \sup\{h_{\eta} - \int f d\eta \mid \eta \in \mathcal{M}\}$.

For $\epsilon > 0$ let $q(\epsilon)$ (resp. $r(\epsilon)$) be the pressure of the Hölder continuous function $2\langle X, \xi_{\epsilon} \rangle$ (resp. $\langle X, \xi_{\epsilon} \rangle$) on T^1M .

Lemma 2.4. The assignments $\epsilon \to q(\epsilon)$ and $\epsilon \to r(\epsilon)$ are continuous and strictly decreasing on $(0, \delta_0]$.

Proof. The considerations of Ancona [1] show that the assignment

$$T^1M \times (0, \delta_0] \to \mathbb{R}, (v, \epsilon) \to \langle X, \xi_{\epsilon} \rangle(v)$$

is continuous, and hence the function $q:\epsilon\in(0,\delta_0]\to q(\epsilon)\in\mathbb{R}$ is continuous as well (see [22]). To show that q is strictly decreasing for $v\in T^1\tilde{M}$ and $\epsilon>0$, denote by u_v^ϵ the Δ_ϵ -harmonic function

$$y \in \tilde{M} \to u_v^{\epsilon}(y) = K_{\epsilon}(Pv, y, \pi(v))$$

with pole at $\pi(v)$. Let $\epsilon > \delta > 0$; the Harnack-inequality at infinity of Ancona [1] and his estimates for the Green's functions G_{ϵ}, G_{δ} of $\Delta_{\epsilon}, \Delta_{\delta}$ show that there is a number c > 0 depending on ϵ and δ but not on $v \in T^1 \tilde{M}$ such that

$$cu_v^{\epsilon}(P\Phi^{-t}v) \leq G_{\epsilon}(Pv, P\Phi^{-t}v) \leq c^{-1}e^{-ct}G_{\delta}(Pv, P\Phi^{-t}v)$$
$$\leq c^{-2}e^{-ct}u_v^{\delta}(P\Phi^{-t}v)$$

for all $t \geq 1$. If w is the projection of v to T^1M then

$$\log u_v^{\epsilon}(P\Phi^{-t}v) = -\int_0^t \langle X, \xi_{\epsilon} \rangle (\Phi^{-s}w) ds$$

$$\leq \log u_v^{\delta}(P\Phi^{-t}v) - ct - 3\log c$$

$$= -\int_0^t \langle X, \xi_{\delta} \rangle (\Phi^{-s}w) ds - ct - 3\log c.$$

Now let $\eta \in \mathcal{M}$ be ergodic with respect to Φ^t ; by the Birkhoff ergodic theorem there is then $w \in T^1M$ such that

$$-\int \langle X, \xi_{\epsilon} \rangle d\eta = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \langle X, \xi_{\epsilon} \rangle (\Phi^{-s} w) ds$$

and

$$-\int \langle X, \xi_{\delta} \rangle d\eta = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \langle X, \xi_{\delta} \rangle (\Phi^{-s} w) ds$$

and consequently

$$-\int \langle X, \xi_{\epsilon} \rangle d\eta \le -\int \langle X, \xi_{\delta} \rangle d\eta - c$$

by the above estimate. Since ergodic measures in \mathcal{M} are just the extremal points of \mathcal{M} this inequality then holds for every Φ^t -invariant Borel-probability measure η on T^1M . In other words we have

$$h_{\eta} - \int 2\langle X, \xi_{\epsilon} \rangle d\eta \le h_{\eta} - \int 2\langle X, \xi_{\delta} \rangle d\eta - 2c$$

for all $\eta \in \mathcal{M}$ and consequently $q(\epsilon) \leq q(\delta) - 2c < q(\delta)$. The proof for $r(\epsilon)$ is completely analogous.

Recall from [12] and the introduction the definition of the g^s -gradient of a Borel measure ρ on T^1M which is absolutely continuous with respect to the stable and strong unstable foliation, with conditionals on stable manifolds in the Lebesgue measure class; namely, let $\tilde{\rho}$ be the lift of ρ to $T^1\tilde{M}$, and let $\tilde{\rho}(\infty)$ be a Borel-probability measure on $\partial \tilde{M}$ which defines the measure class of the projections of the conditionals of $\tilde{\rho}$ on strong unstable manifolds. For $v \in T^1\tilde{M}$ we can represent $\tilde{\rho}$ near v in the form $d\tilde{\rho} = \alpha d\lambda^s \times d\tilde{\rho}(\infty)$ where $\alpha: T^1\tilde{M} \to (0,\infty)$ is a Borel function, and we identify $\tilde{\rho}(\infty)$ with its projections to the leaves of W^{su} via the canonical projection $\pi: T^1\tilde{M} \to \partial \tilde{M}$.

For

$$(v,w) \in D = \{(u,z) \in T^1 \tilde{M} \times T^1 \tilde{M} \mid z \in W^s(u)\}$$

define $l(v,w) = \alpha(w)/\alpha(v)$. Then the function $l:D \to (0,\infty)$ is independent of the choice of $\tilde{\rho}(\infty)$. If for $\tilde{\rho}$ -almost every $v \in T^1\tilde{M}$ the function $l_v:W^s(v)\to (0,\infty), w\to l_v(w)=l(v,w)$ is differentiable, then we obtain a measurable section \tilde{Z} of TW^s over $T^1\tilde{M}$ by assigning to $v\in T^1\tilde{M}$ the gradient at v of $\log l_v$ with respect to the Riemannian metric g^s on $W^s(v)$. This section of TW^s over $T^1\tilde{M}$ is equivariant under the action of $\pi_1(M)$, and hence projects to a measurable section Z of TW^s over T^1M which we call the g^s -gradient of ρ . We then have $\int (\operatorname{div}(Y) + \langle Z, Y \rangle) d\rho = 0$ for every leafwise differentiable section Y of TW^s (see [12]) where for $v \in T^1M$ we denote by $\operatorname{div} Y(v)$ the divergence at v of the restriction of Y to a vector field on $(W^s(v), \langle , \rangle) = (W^s(v), g^s)$.

Lemma 2.5. $q(\epsilon) < 0$ for all $\epsilon \in (0, \delta_0]$.

Proof. Ledrappier showed in [16] that the pressure of the function $\langle X, \xi_{\delta_0} \rangle$ vanishes; this implies $q(\delta_0) < 0$.

Assume to the contrary that $q(\tilde{\epsilon}) \geq 0$ for some $\tilde{\epsilon} > 0$. By continuity we then can find some $\epsilon \in (0, \delta_0]$ such that $q(\epsilon) = 0$.

Let ν^{su} be a family of conditional measures on strong unstable manifolds of the Gibbs equilibrium state ν_{ϵ} for the function $2\langle X, \xi_{\epsilon} \rangle$ with the property that $\frac{d}{dt}\nu^{su} \circ \Phi^t \mid_{t=0} = 2\langle X, \xi_{\epsilon} \rangle$. Let ν be the finite Borel measure on T^1M which satisfies $d\nu = d\lambda^s \times d\nu^{su}$; then the g^s -gradient of ν equals $2\xi_{\epsilon}$.

Let $\delta \in (0, \epsilon)$; then div $\xi_{\delta} + \|\xi_{\delta}\|^2 + \delta_0 - \delta = 0$ and consequently

$$0 = \int (\operatorname{div}(\xi_{\delta} - \xi_{\epsilon}) + 2\langle \xi_{\epsilon}, \xi_{\delta} - \xi_{\epsilon} \rangle) d\nu$$
$$= \int (-\parallel \xi_{\delta} \parallel^{2} + \delta - \epsilon - \parallel \xi_{\epsilon} \parallel^{2} + 2\langle \xi_{\epsilon}, \xi_{\delta} \rangle) d\nu$$
$$= \int (-\parallel \xi_{\delta} - \xi_{\epsilon} \parallel^{2} + \delta - \epsilon) d\nu,$$

which is possible only if $\delta \geq \epsilon$. From this we derive a contradiction to our assumption $q(\epsilon) = 0$.

Corollary 2.6. For every $\epsilon \in (0, \delta_0]$ there is a unique number $a(\epsilon) \in [1, 2)$ such that $pr(a(\epsilon)\langle X, \xi_{\epsilon} \rangle) = 0$, and moreover $a(\delta_0) = 1$.

Proof. The fact that $pr(\langle X, \xi_{\delta_0} \rangle) = 0$ follows from the results of Ledrappier [16]. Let $\epsilon \in (0, \delta_0)$; then $r(\epsilon) > 0$ and $q(\epsilon) < 0$ by Lemma 2.4 and Lemma 2.5. On the other hand, the function $s \to pr(s\langle X, \xi_{\epsilon} \rangle)$ is continuous and hence has to vanish for some $a(\epsilon) \in (1, 2)$. This number $a(\epsilon)$ is unique (a fact that is not needed in the sequel).

For $\epsilon > 0$ let ω_{ϵ} be the unique Gibbs-equilibrium state of the function $a(\epsilon)\langle X, \xi_{\epsilon}\rangle$. Then ω_{ϵ} admits a family ω_{ϵ}^{su} of conditional measures on strong unstable manifolds with the following properties:

- 1) The measures ω_{ϵ}^{su} are locally finite, positive on open sets and absolutely continuous with respect to the stable foliation.
- 2) The measure $\overline{\omega}_{\epsilon}$ on T^1M which is defined by $d\overline{\omega}_{\epsilon} = d\lambda^s \times d\omega_{\epsilon}^{su}$ has total mass 1 and its g^s -gradient equals $a(\epsilon)\xi_{\epsilon}$.

For every $x\in \tilde{M}$ the projection $\pi\colon T^1\tilde{M}\to\partial \tilde{M}$ restricts to a homeomorphism π_x of $T_x^1\tilde{M}$ onto $\partial \tilde{M}$, and for every $v\in T_x^1\tilde{M}$ the restriction of $\pi_x^{-1}\circ\pi$ to $W^{su}(v)$ is a homeomorphism of $W^{su}(v)$ onto $T_x^1\tilde{M}-\{-v\}$. Thus the measure $\tilde{\omega}^{su}_\epsilon$ on $W^{su}(v)$ which is lifted from the measures ω^{su}_ϵ on the leaves of $W^{su}\subset T^1M$ projects under $\pi_x^{-1}\circ\pi|_{W^{su}(v)}$ to a Borel-measure ω^v_ϵ on $T_x^1\tilde{M}$, whose restriction to $T_x^1\tilde{M}-\{-v\}$ is locally finite. The measures $\omega^v_\epsilon, \omega^w_\epsilon(v, w\in T_x^1\tilde{M})$ are absolutely continuous on $T_x^1\tilde{M}-\{-v,-w\}$, with continuous Radon-Nikodym-derivative. More precisely, for $w\in T_x^1\tilde{M}-\{-v\}$ the Radon-Nikodym-derivative $J_v^\epsilon(w)$ at ω of ω^w_ϵ with respect to ω^v_ϵ is defined and the function $J_v^\epsilon\colon w\to J_v^\epsilon(w)$ is continuous on $T_x^1\tilde{M}-\{-v\}$. Thus we obtain a Borel-measure ω^x_ϵ on $T_x^1\tilde{M}$ by defining $\omega^x_\epsilon=J_v^\epsilon\omega^v_\epsilon$. Since $\omega^x_\epsilon=J_w^\epsilon\omega^w_\epsilon$ for every $w\in T_x^1\tilde{M}$, the measure ω^x_ϵ is defined independent of the choice of $v\in T^1\tilde{M}$ and is finite.

For $v \in T^1 \tilde{M}$ and t > 0 the homeomorphism $\pi_{P\Phi^t v}^{-1} \circ \pi_{Pv} \colon T_{Pv}^1 \tilde{M} \to T_{P\Phi^t v}^1 \tilde{M}$ is absolutely continuous with respect to the measures $\omega_{\epsilon}^{Pv}, \omega_{\epsilon}^{P\Phi^t v}$, and its Jacobian at v equals $e^{a(\epsilon)} \int_0^t \langle X, \bar{\xi}_{\epsilon} \rangle (\Phi^s v) \, ds$. Moreover the measures

 ω_{ϵ}^{x} $(x \in \tilde{M})$ are equivariant under the action of the fundamental group $\pi_{1}(M)$ of M on $T^{1}\tilde{M}$, and hence induce for every $p \in M$ a finite measure ω_{ϵ}^{p} on $T_{p}^{1}M$. The measures $\omega_{\delta_{0}}^{p}(p \in M)$ just coincide with the harmonic measures ω^{p} from the introduction up to a universal constant.

Let $\rho > 0$. Following Margulis [20] we call two subsets B_1, B_2 of T^1M which are contained in leaves T^1_xM, T^1_yM of the vertical foliation of T^1M into the fibres of the fibration $T^1M \to M$ ρ -equivalent if there is a continuous map $f: B_1 \times [0,1] \to T^1M$ with the following properties:

- i) For every $v \in B_1$ the set $f(\{v\} \times [0,1])$ is a smooth curve of length smaller than ρ in $W^s(v)$.
- ii) f(v,0) = v and $f(v,1) \in B_2$ for all $v \in B_1$.
- iii) The map $v \in B_1 \to f(v,1) \in B_2$ is a homeomorphism.

With this notation we then have:

Lemma 2.7. For every $\delta > 0$ there is a number $\rho = \rho(\delta) > 0$ such that

$$\omega_{\epsilon}^{p}(A)/\omega_{\epsilon}^{q}(B) < \delta + 1$$

for all $\epsilon \in (0, \delta_0)$ and all ρ -equivalent nontrivial open subsets A, B of leaves of the vertical foliation. In particular, there is for every $\gamma > 0$ a number $c = c(\gamma) > 0$ such that

$$\omega^{Pv}_{\epsilon}\{w\in T^1_{Pv}M\mid \angle(v,w)<\gamma\}\in [c^{-1},c]$$

for all $v \in T^1M$ and all $\epsilon \in (0, \delta_0]$.

Proof. Let $C \subset T^1M$ be a set with a local product structure, given by a vector $v \in T^1M$, a number r > 0, the open ball $B^s(v, r)$ of radius r about v in $(W^s(v), \langle, \rangle)$, the open ball $B^v(v, r) = \{w \in T^1_{Pv}M \mid \angle(v, w) < r\}$ of radius r about v in $T^1_{Pv}M$ with respect to the angular metric and a homeomorphism $[\ ,\]: B^s(v, r) \times B^v(v, r) \to C$ with the following properties:

- i) [w, v] = w for all $w \in B^s(v, r)$.
- ii) [v, z] = z for all $z \in B^v(v, r)$.
- iii) $[w,z] \in W^s(z) \cap T^1_{Pw}M$ for all $w \in B^s(v,r)$, all $z \in B^v(v,r)$.

Let $\epsilon > 0$; then for every $z \in B^s(v,r)$ the canonical map which assigns to $w \in B^v(v,r)$ the point $[z,w] \in T^1_{Pz}M$ is absolutely continuous with respect to the measures ω^p_{ϵ} , and its Jacobian J(z,w) at w equals the value at z of the unique function ϕ_w on $[B^s(v,r),w]$ which satisfies $\phi_w(w) = 1$ and whose gradient with respect to the metric \langle , \rangle on $W^s(w) \supset [B^s(v,r),w]$ equals $a(\epsilon)\xi_{\epsilon}$. Since by the Harnack inequality for positive Δ_{ϵ} -harmonic functions the vector fields ξ_{ϵ} are pointwise uniformly bounded in norm, independent of $\epsilon \in (0,\delta_0]$, the first part of the lemma follows from the definition of ρ -equivalence.

Choose now r > 0 sufficiently small that for every $v \in T^1M$ there is a subset of T^1M with a local product structure containing $B^v(v,r)$ and $B^s(v,r)$. Define a finite Borel measure $\overline{\omega}_{\epsilon}$ on T^1M by $d\overline{\omega}_{\epsilon}(v) = d\lambda^s \times d\omega_{\epsilon}^{Pv}(v)$ (in fact this measure coincides with the Borel probability measure- equally denoted by $\overline{\omega}_{\epsilon}$ - which was defined after Corollary 2.6, see [14]). Thus there is a number a > 0 such that

$$\begin{split} a^{-1}\lambda^s(B^s(v,r))\omega_{\epsilon}^{Pv}(B^v(v,r)) &\leq \bar{\omega}_{\epsilon}[B^s(v,r),B^v(v,r)] \\ &\leq a\lambda^s(B^s(v,r))\omega_{\epsilon}^{Pv}(B^v(v,r)) \end{split}$$

for all $v \in T^1M$ and all $\epsilon > 0$. Since by the definition of λ^s there is a number b > 0 such that $\lambda^s(B^s(v,r)) \in [b^{-1},b]$ for all $v \in T^1M$ and moreover $0 < \overline{\omega}_{\epsilon}(T^1M) < \infty$, we obtain the existence of a number $C_0 > 0$ not depending on $\epsilon \in (0,\delta_0]$ such that $\omega_{\epsilon}^{Pv}(B^v(v,r)) \leq C_0$ for all $v \in T^1M$.

Now let $\tilde{\omega}_{\epsilon}$ be the lift of $\overline{\omega}_{\epsilon}$ to $T^1\tilde{M}$. Since every leaf of W^s is dense in T^1M , there is a number R>0 such that for every $\tilde{v}\in T^1\tilde{M}$ the subset \tilde{C} of $T^1\tilde{M}$ with a local product structure which is defined by $\tilde{C}\cap W^s(\tilde{v})=B^s(\tilde{v},R)$ and $\tilde{C}\cap T^1_{Pv}\tilde{M}=B^v(v,r)$ projects onto T^1M . The above arguments applied to $\tilde{\omega}_{\epsilon}$ then show $\tilde{\omega}_{\epsilon}(\tilde{C})\leq {\rm const.}$ $\omega_{\epsilon}^{P\tilde{v}}B^v(\tilde{v},r)$ where the constant does not depend on \tilde{v} and ϵ . But $\tilde{\omega}_{\epsilon}(\tilde{C})\geq {\rm const.}$ and this implies that the measures $\omega_{\epsilon}^{Pv}(B^v(v,r))$ are bounded from below by a universal constant as well. These arguments are valid for all sufficiently small r>0 and from this the lemma follows.

For $\epsilon \in (0, \delta_0]$ let again $\beta_{\epsilon} \colon DT\tilde{M} - T^1\tilde{M} \to [0, \infty)$ and $a(\epsilon) \in [1, 2)$ be as before. For $v \in T^1\tilde{M}$ and $\rho > 0$ let

$$B_{\epsilon}(v,\rho) = \{ w \in T_{Pv}^{1} \tilde{M} | e^{-\beta_{\epsilon}(v,w)} \leq \rho \};$$

this is a closed neighborhood of v in $T^1_{Pv}\tilde{M}$. For $p\in \tilde{M}$ and a Borel-subset A of $T^1_p\tilde{M}$ write

$$\begin{split} \zeta^p_{\epsilon}(A) &= \sup_{i>0} \inf \Big\{ \sum_{j=1}^{\infty} \rho^{a(\epsilon)}_j \mid \rho_j \leq 1/i \ (j \geq 1) \\ &\quad \text{and} \quad A \subset \cup_{j=1}^{\infty} B_{\epsilon}(v_j, \rho_j) \ \text{ for some } \ v_j \in T^1_p \tilde{M} \Big\}. \end{split}$$

Then ζ_{ϵ}^{p} is a Borel-measure on $T_{p}^{1}\tilde{M}$ (which a priori might be zero or infinite). Moreover the measures ζ_{ϵ}^{p} project to families of Borel measures on the fibres of $T^{1}M \to M$ which we denote by the same symbols.

Now we obtain the following generalization of Theorem A from the introduction:

Proposition 2.8. For every $\epsilon > 0$ there is a number $b_{\epsilon} > 0$ such that $\zeta_{\epsilon}^{p} = b_{\epsilon} \omega_{\epsilon}^{p}$ for all $p \in \tilde{M}$.

Proof. We show first that the measures ζ^p_{ϵ} are finite, and define the same measure class as the measures ω^p_{ϵ} $(p \in \tilde{M})$. For this let c > 0 be such that for every $v \in T^1\tilde{M}$, every $t \geq 0$ and every $w \in T^1_{Pv}\tilde{M}$ with $\angle(v,w) < \pi/4$ we have

$$K_{\epsilon}(Pv, P\Phi^{-t}v, \pi(v))/K_{\epsilon}(Pv, P\Phi^{-t}v, \pi(w)) \in [c^{-1}, c];$$

such a number exists by the Harnack inequality at infinity of Ancona.

Fix a number r>0 which is small enough that for every $v\in T^1\tilde{M}$ we have $B_{\epsilon}(v,r)\subset\{w\in T^1_{Pv}\tilde{M}|\angle(v,w)<\frac{\pi}{4}\};$ such a number exists by Lemma 2.2. By Lemma 2.3 there is then a number $\alpha>0$ such that $B_{\epsilon}(v,c^{-1}r)\supset\{w\in T^1_{Pv}\tilde{M}|\angle(v,w)\leq\alpha\}$ for all $v\in T^1\tilde{M}$, and consequently Lemma 2.7 shows that $\omega^p_{\epsilon}(B_{\epsilon}(v,c^{-1}r))\geq\kappa>0$ for all $p\in \tilde{M},v\in T^1_v\tilde{M}$ where κ is a universal constant.

Let $p \in \tilde{M}, v \in T_p^1 \tilde{M}$ and let $\rho \leq c^{-1}r$. By continuity there is a number $\tau > 0$ such that $K_{\epsilon}(Pv, P\Phi^{\tau}v, \pi(v))\rho = r$. For $w \in B_{\epsilon}(\Phi^{\tau}v, c^{-1}r)$ and $u = \pi_p^{-1}(\pi(w))$ we then have

$$\begin{split} e^{-\beta_{\epsilon}(v,u)} &= K_{\epsilon}(Pv, P\Phi^{\tau}v, \pi(v))^{-1/2} K_{\epsilon}(Pv, P\Phi^{\tau}v, \pi(w))^{-1/2} e^{-\beta_{\epsilon}(w, \Phi^{\tau}v)} \\ &\leq K_{\epsilon}(Pv, P\Phi^{\tau}v, \pi(v))^{-1} r = \rho, \end{split}$$

and consequently $\pi_p(B_{\epsilon}(\Phi^{\tau}v, c^{-1}r)) \subset B_{\epsilon}(v, \rho)$. Lemma 3.6 of [10] and the Harnack inequality at infinity of Ancona thus imply that there is a number $\chi > 0$ such that

$$\omega_{\epsilon}^{p}(B(v,\rho)) \geq K_{\epsilon}(Pv, P\Phi^{t}v, \pi(v))^{-a(\epsilon)}r^{a(\epsilon)}\chi = \chi \rho^{a(\epsilon)}.$$

On the other hand, choose s>0 such that $K_{\epsilon}(Pv, P\Phi^{s}v, \pi(v))\rho=c^{-1}r$. Let $w\in T_{P\Phi^{s}v}\tilde{M}$ with $e^{-\beta_{\epsilon}(\Phi^{s}v,w)}=r$ and let $u=\pi_{p}(w)$. Then

$$e^{-\beta_{\epsilon}(v,u)} \ge c^{-1}K_{\epsilon}(Pv, P\Phi^{s}v, \pi(v))^{-1}r = \rho,$$

and consequently $B_{\epsilon}(v,\rho) \subset \pi_p B_{\epsilon}(\Phi^s v,r)$. As before this means that there is $\bar{\chi} > 0$ such that $\omega^p_{\epsilon}(B(v,\rho)) \leq \bar{\chi} \rho^{a(\epsilon)}$. In other words, for every $v \in T^1 \tilde{M}$ and every $\rho \leq r$ we have $\chi \rho^{a(\epsilon)} \leq \omega^p_{\epsilon}(B(v,\rho)) \leq \bar{\chi} \rho^{a(\epsilon)}$. This implies in particular that $\zeta^p_{\epsilon} \geq \bar{\chi}^{-1} \omega^p_{\epsilon}$ for all $p \in \tilde{M}$.

Let $\kappa > 0$ be sufficiently small that $e^{-\kappa \beta_{\epsilon}}$ satisfies the quasi-ultrametric inequality [14] on the fibres $T_p^1 \tilde{M} \ (p \in \tilde{M})$; such a number exists by Lemma 2.2 and Lemma 2.3. Let $\rho > 0$ and let $v_1, \ldots, v_{k(\rho)} \in T_p^1 \tilde{M}$ be a maximal system of points such that the balls $B_{\epsilon}(v_i, \rho) \subset T_p^1 \tilde{M}$ are

pairwise disjoint. Then the balls $B_{\epsilon}(v_i, 4^{1/\kappa}\rho)$ cover $T_p^1 \tilde{M}$ and hence

$$\begin{split} \zeta^p_\epsilon(T^1_p\tilde{M}) & \leq \limsup_{\rho \to 0} k(\rho) \cdot 4^{1/\kappa} \rho^{a(\epsilon)} \\ & \leq 4^{1/\kappa} \chi^{-1} \limsup_{\rho \to 0} \omega^p_\epsilon(\cup_{i=1}^{k(\rho)} B_\epsilon(v_i,\rho)) \leq 4^{1/\kappa} \chi^{-1}. \end{split}$$

In other words, the measures ζ_{ϵ}^{p} $(p \in \tilde{M})$ are finite and define the same measure class as the measures ω_{ϵ}^{p} .

We are left with showing that $\zeta^p_{\epsilon} = b_{\epsilon} \omega^p_{\epsilon}$ with a universal constant $b_{\epsilon} > 0$. Since by their definition the measures ζ^p_{ϵ} are equivariant under the action of $\pi_1(M)$ it suffices for this to prove that for $p \in \tilde{M}, v \in T^1_p \tilde{M}$ and $t \in \mathbb{R}$ the Jacobian of the projection π_p with respect to the measures $\zeta^{P\Phi^t v}_{\epsilon}$ and ζ^p_{ϵ} at $\Phi^t v$ equals $K_{\epsilon}(P\Phi^t v, Pv, \pi(v))^{a(\epsilon)}$. But this is a direct consequence of the definitions and the fact that

$$\lim_{w \to \Phi^t v} e^{-\beta_{\epsilon}(w,\Phi^t v)} / e^{-\beta_{\epsilon}(\pi_p(w),v)} = K(P\Phi^t v, Pv, \pi(v)).$$

3. Asymptotic properties of the Green's function for $\Delta + \delta_0$

This section is devoted to the proof of the first part of Theorem B in the introduction. We resume the assumptions and notation of Sections 1 and 2. In particular recall the definition of the Hölder-continuous sections $\langle X, \xi_{\epsilon} \rangle$ of TW^s over T^1M for $\epsilon > 0$.

First we estimate for $a \in [1,4]$ and $\epsilon \in (0,\delta_0]$ the entropy of the unique Gibbs equilibrium state for the function $a\langle X, \xi_{\epsilon} \rangle$.

Lemma 3.1. There is a number $\chi > 0$ such that for every $a \in [1, 4]$ and every $\epsilon \in (0, \delta_0]$ the entropy of the unique Gibbs equilibrium state for the function $a\langle X, \xi_{\epsilon} \rangle$ is not smaller than χ .

Proof. By the Harnack-inequality the functions $a\langle X, \xi_{\epsilon} \rangle$ are pointwise uniformly bounded in norm, independent of $a \in [1,4]$ and $\epsilon \in (0,\delta_{\epsilon}]$. Thus if we define $p(a,\epsilon)$ to be the pressure of the function $a\langle X, \xi_{\epsilon} \rangle$, then this defines a continuous function $p: [1,4] \times (0,\delta_{0}] \to \mathbb{R}$ which is uniformly bounded by a number $\rho > 0$.

Identify the diagonal $\{(v,v) \in DTM \mid v \in T^1M\}$ of DTM with T^1M . For $(v,w) \in DTM - T^1M$, again let (v|w) be the Gromov-product of v and w, and for $(a,\epsilon) \in [1,4] \times (0,\delta]$ and $(v,w) \in DTM - T^1M$ define $\delta(a,\epsilon)(v,w) = e^{-a\beta_{\epsilon}(v,w)-p(a,\epsilon)(v|w)}$. The function $\delta(a,\epsilon)$ is continuous, symmetric and admits a continuous extension by zero to the diagonal.

We claim that there is a number b > 0 and for every $(a, \epsilon) \in [1, 4] \times (0, \delta_0]$ a number $c(a, \epsilon) > 0$ such that $\delta(a, \epsilon)(v, w) \ge c(a, \epsilon)e^{-b(v|w)}$ for all

 $(v,w) \in DTM$. For this simply recall from Lemma 2.2 that $e^{-\beta_{\epsilon}(v,w)} \ge c_{\epsilon}e^{-(v|w)/\alpha}$ for all $\epsilon \in (0,\delta_0]$ and all $(v,w) \in DTM$, where $\alpha > 0$ is a universal constant and $c_{\epsilon} > 0$ depends on ϵ .

For $p \in M$ let now $\nu(a,\epsilon)^p$ be the measure on T_p^1M obtained as in Section 2 from the conditionals of the Gibbs-equilibrium state $\nu(a,\epsilon)$ for $a\langle X,\xi_\epsilon\rangle$, and let μ^p be the measure induced from the conditionals of the Bowen-Margulis measure. The arguments in the proof of Proposition 2.8 then show that up to a universal constant the measure $\nu(a,\epsilon)^p$ is just the 1-dimensinal spherical measure induced by the "distance" $\delta(a,\epsilon)$ on T_p^1M , while μ^p is up to a universal constant the h-dimensional spherical measure induced by the "distance"

$$\rho \colon (v, w) \to e^{-(v|w)},$$

where h > 0 is the topological entropy of the geodesic flow on T^1M . Since $\delta(a, \epsilon) \geq c(a, \epsilon)\rho^b$ this means that the Hausdorff dimension of the measure $\nu(a, \epsilon)^p$ with respect to the "distance" ρ on T_p^1M is not smaller than 1/b. On the other hand, by [11] this Hausdorff dimension (which is independent of $p \in M$) is just the entropy of the Gibbs-measure $\nu(a, \epsilon)$. This shows the lemma.

Corollary 3.2. For every $\epsilon > 0$ the pressure of the function $4\langle X, \xi_{\epsilon} \rangle$ is not larger than $-\chi$, where $\chi > 0$ is as in Lemma 3.1.

Proof. Let $\epsilon>0$ and let ν be the unique Gibbs-equilibrium state of the function $4\langle X,\xi_\epsilon\rangle$; then $h_\nu\geq\chi$ by Lemma 3.1. On the other hand, by Lemma 2.5 the pressure of the function $2\langle X,\xi_\epsilon\rangle$ is non-positive and consequently $0\geq h_\nu-2\int\langle X,\xi_\epsilon\rangle\,d\nu\geq\chi-2\int\langle X,\xi_\epsilon\rangle\,d\nu$. From this we conclude that

$$h_{\nu} - 4 \int \langle X, \xi_{\epsilon} \rangle d\nu = pr(4\langle X, \xi_{\epsilon} \rangle) \le h_{\nu} - 2 \int \langle X, \xi_{\epsilon} \rangle d\nu - \chi \le -\chi$$

which shows the corollary.

Corollary 3.3. $\int \langle X, \xi_{\epsilon} \rangle d\eta \geq \chi/4$ for every $\eta \in \mathcal{M}$ and every $\epsilon \in (0, \delta_0]$.

Proof. Let η be a Φ^t -invariant Borel-probability measure on T^1M . Then $h_{\eta} \geq 0$ and $h_{\eta} - 4 \int \langle X, \xi_{\epsilon} \rangle d\eta \leq -\chi$ by Corollary 3.2 from which the corollary follows.

Corollary 3.4. The operator $\Delta + \delta_0$ admits a Green's function G_0 , and the $\Delta + \delta_0$ - Martin boundary does not consist of a single point.

Proof. Let $\gamma \colon \mathbb{R} \to \tilde{M}$ be a geodesic in \tilde{M} whose projection to M is closed of length $\tau > 0$. For $\epsilon > 0$, denote by f_{ϵ}^+ the unique minimal positive Δ_{ϵ} -harmonic function on \tilde{M} with pole at $\gamma(\infty)$ which is normalized by $f_{\epsilon}^+(\gamma(0)) = 1$. Let $w \in T^1M$ be the projection of $\gamma'(0) \in T^1\tilde{M}$. Then w is a periodic point for Φ^t of period $\tau > 0$, and

 $f_{\epsilon}(\gamma(\tau)) = e^{\int_0^{\tau} \langle X, \xi_{\epsilon} \rangle (\Phi^s w) \, ds} \geq e^{\tau \chi/4} > 1$ by Corollary 3.3. Since the space of positive Δ_{ϵ} -harmonic functions $(\epsilon \in (0, \delta])$ on \tilde{M} which are normalized at $\gamma(0)$ is precompact with respect to uniform convergence on compact sets, we can find a sequence $\{\epsilon_j\} \subset (0, \delta_0]$ such that $\epsilon_j \to 0 \quad (j \to \infty)$ and that the functions $f_{\epsilon_j}^+$ converge uniformly on compact subsets of \tilde{M} to a Δ_0 -harmonic function f_0^+ . Clearly $f_0^+(\gamma(\tau))/f_0^+(\gamma(0)) \geq e^{\tau \chi/4} > 1$.

On the other hand, the same argument applied to the geodesic $t \to \gamma$ $(-t+\tau)$ whose tangent projects to the periodic orbit of Φ^t through -w, yields a positive Δ_0 -harmonic function f_0^- on \tilde{M} which satisfies

$$f_0^-(\gamma(\tau))/f_0^-(\gamma(0)) \le e^{-\tau\chi/4} < 1.$$

But this means that f_0^- and f_0^+ are not constant multiples of each other. By the results of Sullivan [21] we conclude from this that Δ_0 admits a Green's function and further that the Δ_0 -Martin boundary of \tilde{M} does not consist of a single point.

Write now $p(\epsilon) = pr(4\langle X, \xi_{\epsilon} \rangle)$ and let η_{ϵ} be the Gibbs equilibrium state of the function $4\langle X, \xi_{\epsilon} \rangle$. Then η_{ϵ} admits a unique family η_{ϵ}^{su} of conditional measures on strong unstable manifolds which transform under the geodesic flow via $\frac{d}{dt} \{ \eta_{\epsilon}^{su} \circ \Phi^t \}|_{t=0} = 4\langle \xi_{\epsilon}, X \rangle - p(\epsilon)$ and such that the measure $\overline{\eta}_{\epsilon}$ on T^1M which is defined by $d\overline{\eta}_{\epsilon} = d\lambda^s \times d\eta_{\epsilon}^{su}$ has total mass 1.

We use these measures to define as in Section 2 a family of finite Borel-measures η_{ϵ}^p $(p \in M)$ on the leaves of the vertical foliation of T^1M . As in Section 2 we arrive at

Lemma 3.5. For every $\delta > 0$ there is a number $\rho = \rho(\delta) > 0$ such that

$$\eta_{\epsilon}^{p}(A)/\eta_{\epsilon}^{q}(B) < \delta + 1$$

for all $\epsilon > 0$ and all ρ -equivalent nontrivial open subsets A, B of leaves of the vertical foliation. In particular, there is a number c > 0 such that $\eta_{\epsilon}^{p}(T_{p}^{1}M) \in [c^{-1}, c]$ for all $p \in T^{1}M$ and all $\epsilon > 0$.

For $p \in \tilde{M}$ and R > 0 let S(p, R) be the distance sphere of radius R about p in \tilde{M} and let $\lambda_{p,R}$ be the Lebesgue measure on S(p,R). Write

$$p(0) = \lim_{\epsilon \to 0} p(\epsilon) \le -\chi.$$

Corollary 3.6. There is a number $\tilde{c} > 0$ such that

$$\int_{S(p,R)} G_{\epsilon}(p,y)^4 e^{-p(\epsilon)R} d\lambda_{p,R} \le \tilde{c}$$

for all $p \in \tilde{M}$, all $R \ge 1$ and all $\epsilon \in [0, \delta_0]$.

Proof. By the maximum principle for positive Δ_{ϵ} -harmonic functions on \tilde{M} ($\epsilon \in [0, \delta_0]$) there is a number a > 0 not depending on ϵ such that

for all $p, x \in \tilde{M}$ with $\operatorname{dist}(p, x) \geq 1$ and every positive Δ_{ϵ} -harmonic function f on \tilde{M} with f(p) = 1 we have $G_{\epsilon}(p, x) \leq a^{-1}f(x)$.

For $w \in T^1 \tilde{M}$ the Jacobian $J_{\epsilon}(w,t)$ of Φ^{-t} at $\Phi^t w$ with respect to the measures η_{ϵ}^p on the leaves of the vertical foliation equals

$$K_{\epsilon}(P\Phi^{t}w, Pw, \pi(w))^{4}e^{-p(\epsilon)t} \ge aG_{\epsilon}(Pw, P\Phi^{t}w)^{4}e^{-p(\epsilon)t} \quad (t \ge 1)$$

and hence Lemma 3.5 together with the Harnack inequalities shows that there is a constant b>0 not depending on $\epsilon\in[0,\delta_0],w\in T^1\tilde{M}$ and $t\geq 1$ such that for every $v\in T^1\tilde{M}$ and every $t\geq 1$ we have

$$\eta_{\epsilon}^{Pv}\{w\in T^1_{Pv}\tilde{M}\mid \operatorname{dist}(P\Phi^tw,P\Phi^tv)\leq 1\}\geq be^{-p(\epsilon)t}G_{\epsilon}(Pv,P\Phi^tv)^4.$$

Since the total mass $\eta_{\epsilon}^{p}(T_{p}^{1}\tilde{M})$ of $T_{p}^{1}\tilde{M}$ with respect to η_{ϵ}^{p} is bounded from above by a positive constant not depending on $\epsilon \in [0, \delta_{0}]$ and $p \in \tilde{M}$, a further application of the Harnack inequality for the Green's function yields the corollary (compare the proof of Corollary 3.13 in [10]).

Now we are ready for the proof the first part of Theorem B:

Corollary 3.7. There is a number c > 0 such that $G_0(x,y) \le ce^{-\chi \operatorname{dist}(x,y)/4}$ for all $x,y \in \tilde{M}$ with $\operatorname{dist}(x,y) \ge 1$.

Proof. Since $p(0) \leq -\chi$, Corollary 3.6 implies that the integrals $\int_{S(x,R)} G_0^4(x,y) e^{\chi R} d\lambda_{x,R}(y)$ are bounded from above by a constant a > 0 which is independent of $x \in \tilde{M}$ and $R \geq 1$. Let $R_0 \geq 1$ be sufficiently large that $\lambda_{x,R}S(x,R) \geq 1$ for every $x \in \tilde{M}$ and $R \geq R_0$.

The Harnack-inequality for positive Δ_0 -harmonic functions on balls shows that for $x,y\in \tilde{M}$ with $R=\mathrm{dist}(x,y)\geq R_0$, there is a ball B about y in S(x,R) with $\lambda_{x,R}(B)=1$ and such that $G_0(x,z)\geq \rho G_0(x,y)$ for all $z\in B$, where $\rho>0$ is a universal constant. Now if $G_0(x,y)\geq 2a^{1/4}\rho^{-1/4}e^{-\chi\,\mathrm{dist}(x,y)/4}$, then this implies $\int_B G_0^4(x,y)e^{\chi\,\mathrm{dist}(x,y)}\,d\lambda_{x,R}\geq 8a$, a contradiction to the above.

4. A variational equation for δ_0

The purpose of this section is to prove Theorem D. For this let η as in the introduction be a Borel-probability measure on T^1M which can be written with respect to a local product structure in the form $d\eta = d\lambda^s \times d\eta^{su}$, where η^{su} is a family of locally finite Borel measures on the leaves of the strong unstable foliation, such that the g^s -gradient Y of η is of class $C_s^{1,\alpha}$. Since $\langle X,Y\rangle = \frac{d}{dt}\eta^{su}\circ\Phi^t|_{t=0}$, the family η^{su} is in fact a family of conditional measures on strong unstable manifolds of the unique Gibbs equilibrium state induced by the Hölder continuous function $\langle X,Y\rangle$. In other words, there is a family η^{ss} of conditional

measures on strong stable manifolds such that the Borel-probability measure $\overline{\eta}$ on T^1M , which is defined with respect to a local product structure by $d\overline{\eta} = d\eta^{ss} \times d\eta^{su} \times dt$, is invariant under the geodesic flow.

For $v \in T^1M$, and $t \in \mathbb{R}$, define $\zeta(v,t) = \zeta_t(v) = e^{\int_0^t \langle X,Y \rangle (\Phi^s v) \ ds}$; then ζ is a multiplicative cocyle with respect to the geodesic flow.

Let $v \in T^1M$ and let $A \subset W^{ss}(v)$ be a compact ball with nonempty interior whose boundary is a set of measure zero with respect to η^{ss} . Denote by λ^{ss} the Lebesgue measure on the leaves of W^{ss} defined by the lift of the Riemannian metric on M. For every $t \in \mathbb{R}$ we then can view the restriction of λ^{ss} to $\Phi^t A$ as a finite Borel measure on T^1M . The arguments of Ledrappier in [17] then imply the following:

Proposition 4.1. The measures $(\zeta_{-t} \circ \Phi^t)\lambda^{ss} \mid_{\Phi^{-t}A}$ converge as $t \to \infty$ weakly to the measure $\eta^{ss}(A)\eta$.

This is used to show:

Lemma 4.2. Let

$$\alpha_{\eta} = \sup \{ \int \phi(\Delta^{s}(\phi) + Y(\phi) + \phi[\frac{1}{2} \operatorname{div}(Y) + \frac{1}{4} ||Y||^{2}]) \ d\eta \ ||$$

$$0 \not\equiv \phi \in C^{\infty}(T^{1}M), \int \phi^{2} \ d\eta = 1 \};$$

then $-\delta_0 \geq \alpha_{\eta}$.

Proof. Define α_{η} as in the statement of the lemma; we show first that $\alpha_{\eta} < \infty$. For this recall that the function

$$v \to (\frac{1}{2} \operatorname{div}(Y) + \frac{1}{4} ||Y||^2)(v)$$

is continuous and hence bounded on T^1M , and consequently

$$\int \phi^2 [\frac{1}{2} \operatorname{div}(Y) + \frac{1}{4} ||Y||^2] \ d\eta / \int \phi^2 \ d\eta$$

is uniformly bounded for all nontrivial continuous functions ϕ on T^1M . On the other hand, for every smooth function ϕ on T^1M we have

$$\int \phi(\Delta^s(\phi) + Y(\phi)) \ d\eta = -\int \|\nabla^s \phi\|^2 \ d\eta \le 0$$

(see [12]), and consequently $\alpha_{\eta} < \infty$.

Let $C_c^{\infty}(\tilde{M})$ be the vector space of smooth functions on \tilde{M} with compact support. Recall that $\delta_0 > 0$ equals the infimum of the Raleigh-quotients of nonvanishing elements of $C_c^{\infty}(\tilde{M})$. If $\lambda_{\tilde{M}}$ denotes the Lebesgue measure on \tilde{M} , then for $\psi \in C_c^{\infty}(\tilde{M})$ this Rayleigh quotient is just

$$-\int \psi(\Delta\psi)d\lambda_{\tilde{M}}\Big/\int \psi^2d\lambda_{\tilde{M}}.$$

Thus it suffices to find a function $\psi \in C_c^{\infty}(\tilde{M})$ such that for every $\epsilon > 0$

$$\int \psi(\Delta \psi) \ d\lambda_{\bar{M}} \ge (\alpha_{\eta} - \epsilon) \int \psi^2 \ d\lambda_M.$$

For this we choose $v \in T^1\tilde{M}$ and identify \tilde{M} with $(W^s(v), g^s)$. As before we denote by λ^{ss} the Lebesgue measures on the leaves of the strong stable foliation induced by the Riemannian metric on M, and write $d\lambda^s = dt \times d\lambda^{ss}$ where dt is the 1-dimensional Lebesgue measure on the flow lines of the geodesic flow. We denote moreover by $\nabla \psi$ (resp. $\Delta \psi$) the gradient (resp. Laplacian) of a function ψ on the smooth Riemannian manifold $(W^s(v), g^s)$.

Let $\epsilon > 0$ and choose a smooth function ϕ on T^1M with $\int \phi^2 d\eta = 1$ in such a way that

$$\alpha = \int \phi(\Delta^s(\phi) + Y(\phi) + \phi[\frac{1}{2}\operatorname{div}(Y) + \frac{1}{4}||Y||^2]) \ d\eta \ge \alpha_{\eta} - \epsilon.$$

Denote again by ϕ the restriction to $W^s(v)$ of the lift of ϕ to $T^1\tilde{M}$, and choose c>0 sufficiently large that $||Y||+|\frac{1}{2}\operatorname{div}(Y)+||Y||^2|(w)\leq c$ and

$$[\|\nabla^{s}(\phi^{2})\| + \phi^{2}(1 + \|Y\|) + |\phi(\Delta^{s}\phi + Y(\phi))| + \phi^{2}|\frac{1}{2}\operatorname{div}(Y) + \frac{1}{4}\|Y\|^{2}|](w) \le c$$

for every $w \in T^1M$.

Let \tilde{Y} be the lift of Y to $T^1\tilde{M}$, and let f be a positive function on $W^s(v)$ which satisfies $\nabla \log f = \frac{1}{2}\tilde{Y}|_{W^s(v)}$. Then f is a function of class C^2 , and $\|\nabla f\| + |\Delta(f)| \le cf$ pointwise on $W^s(v)$.

Let $B_2 \supset B_1$ be compact balls of radius $r_2 > r_1 > 0$ about v in $W^{ss}(v)$, whose boundaries have measure zero with respect to η^{ss} and such that

$$\int_{B_2} f^2 \ d\eta^{ss} \leq (1 + \epsilon/2c) \int_{B_1} f^2 \ d\eta^{ss}.$$

We then may renormalize f in such a way that $\int_{B_1} f^2 d\eta^{ss} = 1$.

Choose a smooth Φ^t -invariant function ρ on $W^s(v)$ with values in [0,1] and such that $\rho(w)=0$ for $w\in W^{ss}(v)-B_2$ and $\rho(w)=1$ for $w\in B_1$. Since ρ is Φ^t -invariant, there is then a number $t_0>0$ such that $|\Delta^s\rho(w)|\leq 1$ and $\|\nabla\rho(w)\|\leq 1$ for every $w\in\bigcup_{t\geq t_0}\Phi^{-t}W^{ss}(v)$. By

Proposition 4.1 there is a number $t_1 \ge t_0$ such that for every $t \ge t_1$ the following are satisfied:

$$\int_{\Phi^{-t}B_{1}} (\phi f^{2})(\Delta(\phi) + 2\langle \nabla \log f, \nabla \phi \rangle + \phi [\operatorname{div}(\nabla \log f) + \|\nabla \log f\|^{2}]) \ d\lambda^{ss}$$

$$= \int_{\Phi^{-t}B_{1}} (\phi f)\Delta(\phi f) \ d\lambda^{ss} \ge \int_{B_{1}} f^{2} \ d\eta^{ss}(\alpha - \epsilon) = \alpha - \epsilon,$$

(2)
$$\int_{\Phi^{-t}(B_2-B_1)} f^2 d\lambda^{ss} \le \epsilon/c,$$

(3)
$$\int_{\Phi^{-t}B_1} \phi^2 f^2 \ d\lambda^{ss} \ge (1+\epsilon)^{-1}.$$

The support of the function $\rho \phi f$ is contained in $\bigcup_{t \in \mathbb{R}} \Phi^t B_2$ and

$$\begin{split} |(\rho\phi f)\Delta(\rho\phi f)| \leq & f^{2}[\,|\phi^{2}\rho\Delta(\rho)| + \rho\|\nabla\rho\|(2\|\phi\nabla\phi\| + \|\tilde{Y}\|\phi^{2}) \\ & + \rho^{2}(|\phi(\Delta(\phi) + \tilde{Y}(\phi))| + \phi^{2} \mid \frac{1}{2} \operatorname{div}(\tilde{Y}) + \frac{1}{4}\|\tilde{Y}\|^{2}|\,)], \end{split}$$

and consequently $|(\rho \phi f)\Delta(\rho \phi f)| \leq cf^2$ on $\bigcup_{t\geq t_1} \Phi^{-t} W^{ss}(v)$. Thus for $t\geq t_1$ we obtain

$$\int_{\Phi^{-t}W^{ss}(v)} (\rho \phi f) \Delta(\rho \phi f) d\lambda^{ss}$$

$$\geq \int_{\Phi^{-t}B_1} (\phi f) \Delta(\phi f) d\lambda^{ss} - \int_{\Phi^{-t}(B_2 - B_1)} cf^2 d\lambda^{ss}$$

$$\geq \alpha - 2\epsilon.$$

Choose a smooth function $\xi \colon \mathbb{R} \to [0,1]$ such that $\xi(t) = 0$ for $t \leq 0$, $\xi(t) = 1$ for $t \geq 1$. For an integer k > 0, define functions $\xi_k, \zeta_k \colon W^s(v) \to [0,1]$ by $\xi_k(\Phi^t w) = \xi(-t-k)$ and $\zeta_k(\Phi^t w) = \xi(k+t+1)$ for $w \in W^{ss}(v)$ and $t \in \mathbb{R}$. Then the norms of the gradients of ξ_k, ζ_k and the absolute values of $\Delta(\xi_k), \Delta(\zeta_k)$ are pointwise uniformly bounded independent of k > 0.

From the above estimates and Proposition 4.1 it then follows:

(5) There is a number A > 0 such that

$$|\int_{\Phi^{-t}W^{ss}(v)} (\rho \phi f \zeta_j \xi_k) \Delta(\rho \phi f \zeta_j \xi_k) \ d\lambda^{ss} | \leq A$$

for all $j, k \geq 0$ and all $t \geq t_1$.

Choose an integer $m \geq 2A/\epsilon$, let $k > t_1 + 1$ and define a function ψ on $W^s(v)$ by $\psi = \xi_k \zeta_{m+k} \rho \phi f$. Then ψ is a smooth function with compact support, and $\int_{W^s(v)} \psi(\Delta \psi) d\lambda^s = a_1 + a_2 + a_3$ where

$$\begin{array}{ll} |a_1| = & \left| \int_{\cup_{t \leq k} \Phi^{-t} W^{ss}(v)} \psi(\Delta \psi) \ d\lambda^s \right| \leq A, \\ a_2 = & \int_{\cup_{t=k}^{k+m} \Phi^{-t} W^{ss}(v)} \psi(\Delta \psi) \ d\lambda^s \geq m(\alpha_{\eta} - 3\epsilon) \quad \text{and} \\ |a_3| = & \left| \int_{\cup_{t \geq k+m} \Phi^{-t} W^{ss}(v)} \psi(\Delta \psi) \ d\lambda^s \right| \leq A. \end{array}$$

Together we obtain that $\int \psi(\Delta \psi) \ d\lambda^s \ge m(\alpha_{\eta} - 4\epsilon)$, in particular $\alpha_{\eta} - 4\epsilon < 0$.

On the other hand we have

$$\int \psi^2 \ d\lambda^s \ge \int_{\bigcup_{i=k}^{k+m} \Phi^{-i} B_1} \phi^2 f^2 \ d\lambda^2 \ge m(1+\epsilon)^{-1},$$

and consequently

$$\int \psi(\Delta \psi) \ d\lambda^s / \int \psi^2 \ d\lambda^s \ge (\alpha_\eta - 4\epsilon)(1 + \epsilon).$$

Thus also $-\delta_0 \ge (\alpha_{\eta} - 4\epsilon)(1 + \epsilon)$, which implies that $-\delta_0 \ge \alpha_{\eta}$ since $\epsilon > 0$ was arbitrary.

The next lemma then shows that $\alpha_{\eta} = -\delta_0$ for every measure η as above:

Lemma 4.3. $-\delta_0 \leq \alpha_{\eta}$ for every measure η induced as above by the Gibbs-equilibrium state of a Hölder continuous function on T^1M .

Proof. If suffices to construct a function ϕ on T^1M of class C_s^2 such that $\int \phi^2 d\eta = 1$ and $\int \phi(\Delta^s(\phi) + Y(\phi) + \phi[\frac{1}{2}\operatorname{div}(Y) + \frac{1}{4}\|Y\|^2]) d\eta \ge -\delta_0 - \epsilon$ for every $\epsilon > 0$.

For this we recall that $-\delta_0$ equals the top of the L^2 -spectrum of \tilde{M} , and hence for $\epsilon > 0$ there is a compact ball B in \tilde{M} and a smooth function $0 \not\equiv f$ on \tilde{M} with support in B such that

$$-\int f\Delta(f)\ d\lambda_{\tilde{M}} \leq (\delta_0 + \epsilon)\int f^2\ d\lambda_{\tilde{M}},$$

where $\lambda_{\tilde{M}}$ is the Lebesgue measure on \tilde{M} .

Recall that every leaf of the stable foliation of $T^1\tilde{M}$ projects diffeomorphically onto \tilde{M} .

Let $\Pi \colon T^1\tilde{M} \to T^1M$ be the canonical projection. If $v \in T^1\tilde{M}$ is such that $\Pi W^s(v)$ does not contain a periodic orbit of the geodesic flow, then the restriction of Π to $W^s(v)$ is injective. This implies that we can find a vector $v \in T^1\tilde{M}$ with $P(v) \in B$, an open neighborhood A of v in $W^s(v)$, an open neighborhood D of v in $W^{su}(v)$ and a homeomorphism $A \circ A \times D$ onto an open neighborhood C of v in $T^1\tilde{M}$ with the following properties:

- 1) $\Lambda(w,v) = w$ for every $w \in A$.
- 2) $\Lambda(v,z)=z$ for every $z\in D$.
- 3) $\Lambda(A \times \{z\})$ is contained in $W^s(z)$ for every $z \in D$ and $P\Lambda(A \times \{z\}) \supset B$.
- 4) $\Lambda(\{w\} \times D)$ is contained in $W^{su}(w)$ for every $w \in A$.
- 5) The restriction of Π to C is a diffeomorphism into T^1M .

Recall that the measures η^{su} on the leaves of the strong unstable foliation induce a nonzero measure η^D on D. Denote again by λ^s the family of Lebesgue measures on the manifolds $A \times \{z\} \subset A \times D$ induced

via Λ from the Lebesgue measures on the leaves of the stable foliation. Let ρ be the measure on $A \times D$ defined by $d\rho = d\lambda^s \times d\eta^D$. Then Λ is absolutely continuous with respect to the measure ρ on $A \times D$ and the measure η on C. The square root α of the Jacobian of Λ with respect to these measures is Hölder continuous. If \tilde{Y} denotes the lift of the vector field Y to $T^1\tilde{M}$, then $\alpha \circ \Lambda^{-1}$ is of class C_s^2 on C and $\nabla^s \log(\alpha \circ \Lambda^{-1}) = \frac{1}{2}\tilde{Y}$.

Choose a smooth function ψ on D with compact support and values in [0,1] such that $\psi(v)=1$. Define a function ϕ on C by $\phi(\Lambda(w,z))=\psi(z)\alpha^{-1}(w,z)f(P(\Lambda(w,z)))$. Then ϕ is a function on C with compact support and hence induces a function $\overline{\phi}$ on T^1M with compact support in $\Pi(C)$. Moreover $\overline{\phi}$ is of class C_s^2 .

Write $\overline{\alpha} = \alpha \circ \Lambda^{-1}$ and $\overline{f} = f \circ P$; then

$$\begin{split} \chi &= \int \overline{\phi}(\Delta^s(\overline{\phi}) + Y(\overline{\phi}) + \overline{\phi}[\frac{1}{2} \operatorname{div}(Y) + \frac{1}{4}\|Y\|^2]) \ d\eta \\ &= \int_C \phi(\Delta^s(\phi) + \tilde{Y}(\phi) + \phi[\frac{1}{2} \operatorname{div}(\tilde{Y}) + \frac{1}{4}\|Y\|^2]) \ d\eta \\ &= \int_{A \times D} (\overline{f} \circ \Lambda) \alpha^{-1} [\Delta^s(\overline{f} \overline{\alpha}^{-1}) \circ \Lambda + \tilde{Y}(\overline{f} \overline{\alpha}^{-1}) \circ \Lambda \\ &+ (\overline{f} \circ \Lambda) \alpha^{-1} (\frac{1}{2} \operatorname{div}(\tilde{Y}) + \frac{1}{4}\|\tilde{Y}\|^2) \circ \Lambda] \alpha^2 \psi^2 \ d\lambda^s \times d\eta^D. \end{split}$$

Now $\nabla^s \log \overline{\alpha} = \frac{1}{2} \tilde{Y}$ and consequently we obtain from the above formula that

$$\chi = \int_{A \times D} (\overline{f} \circ \Lambda) (\Delta^{s}(\overline{f}) \circ \Lambda) \psi^{2} d\lambda^{s} \times d\eta^{D}$$

$$\geq (-\delta_{0} - \epsilon) \int_{A \times B} (\overline{f} \circ \Lambda)^{2} \psi^{2} d\lambda^{s} \times d\eta^{D}$$

by the choice of \overline{f} . But clearly

$$\int \overline{\phi}^2 d\overline{\eta} = \int_{A imes D} (\overline{f} \circ \Lambda)^2 \psi^2 d\lambda^s imes d\eta^D$$

and therefore $\alpha_{\eta} \geq -\delta_0 - \epsilon$ by the definition of α_{η} . Since $\epsilon > 0$ was arbitrary, the lemma follows.

Recall that the Lebesgue Liouville measure λ on T^1M is the Gibbs equilibrium state of the Hölder continuous function $v \to tr U(v)$ where tr U(v) is the trace of the second fundamental form at Pv of the horsphere $PW^{su}(v)$. Denote the g^s -gradient of λ by Z. Then we have:

Lemma 4.4. The differential operator $L = \Delta^s + Z + \frac{1}{2} \operatorname{div}(Z) + \frac{1}{4} ||Z||^2$ is self-adjoint with respect to λ , and the top of its spectrum equals δ_0 .

Proof. Since Z is the g^s -gradient of λ , the operator L is self-adjoint with respect to λ by Corollary 2.6 of [12].

Let Δ^v be the leafwise Laplacean of the vertical foliation, i.e., for a smooth function f on T^1M and every $v \in T^1M$ the evaluation of Δ^v on f at v is obtained by restricting f to the fibre $T^1_{Pv}\tilde{M}$ of the fibration $T^1M \to M$ through v and evaluating the Laplacean of the round sphere $T^1_{Pv}M$ on this restriction. Then Δ^v is a second order differential operator on T^1M with smooth coefficients, which is subordinate to the vertical foliation and leafwise elliptic. Moreover Δ^v is self-adjoint with respect to the invariant measure λ , i.e., for smooth functions f, ϕ on T^1M we have $\int f(\Delta^v\phi) d\lambda = \int \phi(\Delta^v f) d\lambda = -\int \langle \nabla^v f, \nabla^v \phi \rangle d\lambda$ where $\nabla^v f$ is the section of the vertical bundle T^v whose restriction to a fibre T^1_pM equals the gradient of the restriction of f to the (totally geodesic) submanifold T^1_pM of T^1M , and by abuse of notation \langle , \rangle is the natural Riemannian metric on T^v .

Since the vertical foliation and the stable foliation of T^1M are transversal, for every $\epsilon > 0$ the operator $L_{\epsilon} = L + \epsilon \Delta^{v}$ is elliptic and moreover self-adjoint with respect to λ . In particular the spectrum of L_{ϵ} is a pure point spectrum, and its top is an eigenvalue α_{ϵ} whose corresponding eigenspace is one-dimensional and spanned by a positive function $f_{\epsilon} : T^1M \to (0, \infty)$ of class C^2 . We assume f_{ϵ} to be normalized in such a way that $\int f_{\epsilon} d\lambda = 1$. First we note:

Lemma 4.5. $\lim_{\epsilon \to 0} \alpha_{\epsilon} = -\delta_0$.

Proof. Let Q_{ϵ} be the quadratic form on the space of smooth functions on $T^{1}M$ associated to L_{ϵ} ; for every smooth function ϕ on $T^{1}M$ we have

$$Q_{\epsilon}(\phi) = \int \phi(L_{\epsilon}\phi) \ d\lambda = \int \phi(L\phi) \ d\lambda - \epsilon \int \|\nabla^{v}\phi\|^{2} \ d\lambda,$$

and consequently $Q_{\epsilon} \geq Q_{\delta}$ for $\epsilon \leq \delta$. Now the space of smooth functions on T^1M is a form core for the quadratic form Q_0 defined by L; since $Q_{\epsilon} \to Q_0(\epsilon \to 0)$ on this form core, the operators L_{ϵ} converge as $\epsilon \to 0$ in the strong resolvent sense to L (see [6]).

This implies in particular that $\lim_{\epsilon \to 0} \alpha_{\epsilon} = -\delta_0$.

Lemma 4.6. Let η be a weak limit of the measures $f_{\epsilon}\lambda$ on T^1M as $\epsilon \to 0$. Then η is a harmonic measure for the operator $L + \delta_0$.

Proof. Let ϕ be a smooth function on T^1M ; then ϕ and $\Delta^v \phi$ are continuous. Hence $\int \epsilon(\Delta^v \phi) f_{\epsilon} d\lambda \to 0$ and

$$(\alpha_{\epsilon} + \delta_0) \int \phi f_{\epsilon} \ d\lambda \to 0 \ (\epsilon \to 0)$$

by Lemma 4.5. Let $\{\epsilon_i\}_i$ be a sequence such that $\epsilon_i \to 0$ and that the

measures $f_{\epsilon_i}\lambda$ converge weakly as $i\to\infty$ to a measure η . We then have

$$\int (L + \delta_0) \phi \ d\eta = \lim_{i \to \infty} \int [(L + \delta_0) \phi] f_{\epsilon_i} \ d\lambda$$

$$= \lim_{i \to \infty} \int [(L + \epsilon_i \Delta^v - \alpha_{\epsilon_i}) \phi] f_{\epsilon_i} \ d\lambda$$

$$= \lim_{i \to \infty} \int \phi (L_{\epsilon_i} - \alpha_{\epsilon_i}) (f_{\epsilon_i}) \ d\lambda = 0,$$

since L_{ϵ_i} is self-adjoint with respect to λ . This shows the lemma.

Corollary 4.7. Let η be as in Lemma 4.6, and let ζ be the section of TW^s such that $\zeta + \frac{1}{2}Z$ is the g^s -gradient of η . Then

$$\operatorname{div}(\zeta) + \|\zeta\|^2 + \delta_0 = 0.$$

Proof. Let $v \in T^1 \tilde{M}$ and let f be a function on $W^s(v)$ such that $\nabla^s \log f = \frac{1}{2} Z \mid_{W^s(v)}$. For a smooth function ϕ on $W^s(v)$ with compact support we then have $f^{-1} \Delta^s(f\phi) = \Delta^s(\phi) + Z(\phi) + \phi f^{-1} \Delta(f) = L\phi$, and hence the formal adjoint L^* of $L_{|_{W^s(v)}}$ is given by $L^*(\phi) = f \Delta^s(f^{-1}\phi)$. In other words, if $L^*(\phi) = -\delta_0 \phi$, then $f^{-1} \phi$ is a solution of $\Delta^s(f^{-1}\phi) = -\delta_0 f^{-1} \phi$.

From this and Lemma 2.2 of [12] the corollary follows.

5. Pressure computation

In this section we use the results in Section 4 to prove the second part of Theorem B and Theorem C. For this we continue to use the assumptions and notation of Sections 1-4. Recall in particular that we denoted the pressure of the functions $2\langle X, \xi_{\epsilon} \rangle$ for $\epsilon \in (0, \delta_0]$ by $q(\epsilon) < 0$. Our theorem will be a consequence of the fact that $\lim_{\epsilon \to 0} q(\epsilon) = 0$. As in Section 4 let $L_{\delta} = \Delta^s + Z + \frac{1}{2} \operatorname{div}(Z) + \frac{1}{4} ||Z||^2 + \delta \Delta^v$, and let f_{δ} be an eigenfunction of L_{δ} with respect to the largest eigenvalue α_{δ} . In contrast to Section 4 however we assume now that f_{δ} is normalized in such a way that $\int f_{\delta}^2 d\lambda = 1$. Then we have:

Lemma 5.1. Let ν be a weak limit of the measures $f_{\delta}^2 \lambda$ on T^1M as $\delta \to 0$. Then the following are satisfied:

- i) The vector fields ξ_{ϵ} converge as $\epsilon \to 0$ in the Hilbert space of sections of TW^s over T^1M , which are square integrable with respect to ν to a section ξ of TW^s .
- ii) $\operatorname{div}(\xi) + \|\xi\|^2 + \delta_0 = 0$ almost everywhere on (T^1M, ν) .
- iii) ν is a self-adjoint harmonic measure for $\Delta^s + 2\xi$.

iv) Every ν -measurable section ζ of TW^s over T^1M , which satisfies $\operatorname{div}(\zeta) + \|\zeta\|^2 + \delta_0 \leq 0$ almost everywhere, coincides with ξ .

Proof. Let $\{\delta_i\}_i$ be a sequence such that $\delta_i \to 0$ $(i \to \infty)$ and that the measures $f_{\delta_i}^2 \lambda$ converge as $i \to \infty$ weakly to a measure ν . For i > 0 write $f_i = f_{\delta_i}$, $\alpha_i = \alpha_{\delta_i}$ and $Q_i = \nabla^s \log f_i + \frac{1}{2}Z$. The differential equation for f_i then yields

(1)
$$\operatorname{div}(Q_i) + ||Q_i||^2 - \alpha_i + \delta_i f_i^{-1} \Delta^{\nu}(f_i) = 0,$$

and consequently

(2)
$$\operatorname{div}(\xi_{\epsilon} - Q_{i}) = \|Q_{i}\|^{2} - \|\xi_{\epsilon}\|^{2} - \delta_{0} + \epsilon - \alpha_{i} + \delta_{i} f_{i}^{-1} \Delta^{v}(f_{i})$$

for every $\epsilon > 0$. Since $f_i^2 \lambda$ is a self-adjoint harmonic measure for $\Delta^s + 2Q_i$ (see [12]), integration of equation (2) shows

$$\begin{split} 0 &= \int (\operatorname{div}(\xi_{\epsilon} - Q_i) + 2\langle Q_i, \xi_{\epsilon} - Q_i \rangle) f_i^2 \ d\lambda \\ &= \int (-\|\xi_{\epsilon} - Q_i\|^2 - \delta_0 + \epsilon - \alpha_i - \delta_i \|\nabla^v \log f_i\|^2) f_i^2 \ d\lambda, \end{split}$$

since $\int (f_i^{-1}\Delta^v(f_i))f_i^2 d\lambda = -\int \|\nabla^v \log f_i\|^2 f_i^2 d\lambda$ by self-adjointness of Δ^v . From this we obtain

(3)
$$\limsup_{i \to \infty} \int \|\xi_{\epsilon} - Q_i\|^2 f_i^2 \ d\lambda \le \epsilon.$$

Since the above equation is valid for every $\epsilon>0$ we further conclude that

(4)
$$\lim \sup_{i \to \infty} \delta_i \int \|\nabla^v \log f_i\|^2 f_i^2 \ d\lambda = 0.$$

Now by the definition of ν we have

$$\int \|\xi_{\epsilon} - \xi_{\delta}\|^{2} d\nu = \lim_{i \to \infty} \int \|\xi_{\epsilon} - \xi_{\delta}\|^{2} f_{i}^{2} d\lambda$$

$$\leq \limsup_{i \to \infty} 2(\int \|\xi_{\epsilon} - Q_{i}\|^{2} f_{i}^{2} d\lambda + \int \|\xi_{\delta} - Q_{i}\|^{2} f_{i}^{2} d\lambda)$$

$$= 2\epsilon + 2\delta$$

by the above estimates for all $\epsilon, \delta > 0$. Hence for every sequence $\{\epsilon_j\}_{j>0}$ with $\epsilon_j \to 0$ $(j \to \infty)$ the vector fields $\{\xi_{\epsilon_j}\}_j$ form a Cauchy sequence in the Hilbert space \mathcal{H} of sections of TW^s over T^1M , which are square integrable with respect to ν . In other words, there is a section $\xi \in \mathcal{H}$ such that $\xi_\delta \to \xi$ $(\delta \to 0)$ in \mathcal{H} which yields i) above.

Next we want to show that ν is a self-adjoint harmonic measure for $\Delta^s + 2\xi$, and for this it is sufficient to show that

$$\int (\operatorname{div}(Y) + \langle 2\xi, Y \rangle) \ d\nu = 0$$

for every section Y of TW^s of class C_s^1 . Let Y be a section of TW^s of class C_s^1 and let $\epsilon > 0$; since $\xi_{\delta} \to \xi$ in \mathcal{H} there is a number $\delta \leq \epsilon$ such that

(5)
$$|\int \langle 2\xi, Y \rangle \ d\nu - \int \langle 2\xi_{\delta}, Y \rangle \ d\nu | < \epsilon.$$

Now the functions $\langle 2\xi_{\delta}, Y \rangle$ and $\operatorname{div}(Y)$ are continuous on T^1M and the measures $f_i^2\lambda$ converge as $i \to \infty$ weakly to ν . This means that we can find a number $i_0 > 0$ such that

(6)
$$|\int (\operatorname{div}(Y) + \langle 2\xi_{\delta}, Y \rangle) d\nu - \int (\operatorname{div}(Y) + \langle 2\xi_{\delta}, Y \rangle) f_i^2 d\lambda| < \epsilon$$

for all $i > i_0$. On the other hand, by (4) above we may further assume that

(7)
$$|\delta_i \int f_i \Delta^v(f_i) \ d\lambda - \alpha_i - \delta_0 | < \epsilon$$

for all $i > i_0$. The equation preceding (3) then implies that $\int \|\xi_{\delta} - Q_i\|^2 f_i^2 \ d\lambda \le 2\epsilon$ so that

(8)
$$| \int \langle 2\xi_{\delta}, Y \rangle f_i^2 d\lambda - \int \langle 2Q_i, Y \rangle f_i^2 d\lambda | \leq 2c\sqrt{2\epsilon},$$

where $c = \max\{||Y||(v) \mid v \in T^1M\}.$

Since $f_i^2 d\lambda$ is a self-adjoint harmonic measure for $\Delta^s + 2Q_i$, integration and (6), (7), (8) yield

$$|\int (\operatorname{div}(Y) + \langle 2\xi, Y \rangle) d\nu| \le 2\epsilon + 2c\sqrt{2\epsilon} + |\int (\operatorname{div}(Y) + \langle 2Q_i, Y \rangle) f_i^2 d\lambda|$$

$$= 2(\epsilon + c\sqrt{2\epsilon}).$$

Since $\epsilon > 0$ was arbitrary we obtain that indeed

$$\int (\operatorname{div}(Y) + \langle 2\xi, Y \rangle) \ d\nu = 0,$$

and hence iii).

Now ν is a self-adjoint harmonic measure for a leafwise elliptic second order differential operator subordinate to W^s , and hence ν is absolutely continuous with respect to the stable and strong unstable foliation, with conditionals on stable manifolds in the Lebesgue measure class. But this means that for ν -almost every $v \in T^1M$ the restriction of the vector

fields ξ_{δ} to the open ball B of radius 1 about v in $W^{s}(v)$ converge almost everywhere pointwise with respect to the Lebesgue measure λ^{s} on $W^{s}(v)$ to the restriction of ξ by i) above, and $\|\xi_{\delta}\|^{2} \to \|\xi\|^{2}$ almost everywhere pointwise on $(W^{s}(v), \lambda^{s})$ as well. But $\operatorname{div}(\xi_{\delta}) + \|\xi_{\delta}\|^{2} + \delta_{0} - \delta = 0$ and consequently via partial integration we obtain that $\operatorname{div}(\xi) + \|\xi\|^{2} + \delta_{0} = 0$ on B in the sense of distributions. Regularity theory for elliptic equations then implies that in fact the restriction of ξ to B is a strong solution of $\operatorname{div}(\xi) + \|\xi\|^{2} + \delta_{0} = 0$ and hence $\operatorname{div}(\xi) + \|\xi\|^{2} + \delta_{0} = 0$ almost everywhere with respect to ν .

We are left with statement iv) in the lemma. For this let χ be any ν -measurable square integrable section of TW^s over T^1M , which satisfies $\operatorname{div}(\chi) + \|\chi\|^2 + \delta_0 \leq 0$ almost everywhere with respect to ν . As before we then have

$$0 \ge \int (\operatorname{div}(\chi - \xi) + \|\chi\|^2 - \|\xi\|^2) \ d\nu$$

= $\int (\langle 2\xi, \xi - \chi \rangle + \|\chi\|^2 - \|\xi\|^2) \ d\nu$
= $\int \|\xi - \chi\|^2 \ d\nu$,

since ν is a self-adjoint harmonic measure for $\Delta^s + 2\xi$. Hence $\xi = \chi$ almost everywhere.

By Lemma 5.1 iii) the measure ν is harmonic for the leafwise elliptic differential operator $\Delta^s + 2\xi$. Therefore by the result of Garnett [8] we can write $d\nu = d\lambda^s \times d\nu^{su}$ where ν^{su} is a family of locally finite Borelmeasures on the leaves of W^{su} , which are absolutely continuous under canonical maps, and where λ^s is the family of Lebesgue measures on the leaves of W^s for all $\epsilon > 0$.

In other words, the measures ν^{su} induce a $\pi_1(M)$ -invariant measure class $\nu(\infty)$ on $\partial \tilde{M}$. This measure class has the properties mentioned in Theorem C:

Corollary 5.2. For every $x \in \tilde{M}$ and $\nu(\infty)$ -almost every $\zeta \in \partial \tilde{M}$ the functions $y \to K_{\epsilon}(x, y, \zeta)$ converge as $\epsilon \to 0$ uniformly on compact subsets of \tilde{M} to a minimal positive Δ_0 -harmonic function.

Proof. Let $\tilde{\nu}$ be the lift of ν to a locally finite measure on $T^1\tilde{M}$, and let $\tilde{\xi}$ be the lift of ξ . Then Lemma 5.1 implies that for $\tilde{\nu}$ -almost every $v \in T^1\tilde{M}$ the functions $y \to K_{\epsilon}(x, y, \pi(v))$ converge as $\epsilon \to 0$ uniformly on compact subsets of \tilde{M} to a positive Δ_0 -harmonic function f^v . The gradient of $\log f^v$ is just the projection to \tilde{M} of the restriction of $\tilde{\xi}$ to $W^s(v)$.

We are left with showing that for $\tilde{\nu}$ -almost every $v \in T^1 \tilde{M}$ the function f^v is in fact minimal Δ_0 -harmonic. Since for every smooth function

 ϕ on \tilde{M} we have

$$f_v^{-1}\Delta(\phi f^v) + \delta_0 \phi = \Delta(\phi) + 2\langle \nabla \log f^v, \nabla \phi \rangle,$$

this is equivalent to saying that every bounded $\Delta + 2\nabla \log f^v$ -harmonic function on \tilde{M} is constant. Now ν is a self-adjoint harmonic measure for $\Delta^s + 2\xi$, and hence the Kaimanovich-entropy of the diffusion on T^1M induced by $(\Delta^s + 2\xi, \nu)$ vanishes (see [12], [15]). But this just means that ν -almost every leaf of W^s is Liouville with respect to $\Delta^s + 2\xi$, which yields the corollary.

Consider now again the measures ν^{su} on the leaves of the strong unstable foliation. The arguments in the proof of Lemma 3.5 then show that there is a number c>0 such that $\nu^{su}(B^{su}(v,1))\in [c^{-1},c]$ for all $v\in T^1M$, where $B^i(v,\delta)$ denotes the open ball of radius $\delta>0$ about v in the manifold $W^i(v)$ equipped with the metric g^i which is induced from the Riemannian metric on M (i=s,su,ss).

Recall that the unique Gibbs equilibrium state ν_{ϵ} of the function $2\langle X, \xi_{\epsilon} \rangle$ admits a family ν_{ϵ}^{su} of conditional measures on strong unstable manifolds such that $\frac{d}{dt}\nu_{\epsilon}^{su} \circ \Phi^t \mid_{t=0} = 2\langle X, \xi_{\epsilon} \rangle + q(\epsilon)$. By the arguments in the proof of Lemma 2.7 we have $\nu_{\epsilon}^{su}(B^{su}(v,1)) \in [c^{-1},c]$ for all $v \in T^1M$ independent of ϵ . Let $\mathcal{F} \colon v \to -v$ be the flip on T^1M and define for $\epsilon > 0$ a measure ν_{ϵ}^{s} on the leaves of W^{s} by $d\nu_{\epsilon}^{s} = dt \times d\nu_{\epsilon}^{ss}$ where $\nu_{\epsilon}^{ss} = \nu_{\epsilon}^{su} \circ \mathcal{F}$. Clearly there is a number a>0 such that $\nu_{\epsilon}^s(B^s(v,1))\in [a^{-1},a]$ for all $v \in T^1M$ and all $\epsilon \in (0, \delta_0]$. Thus we obtain a finite Borel measure σ_{ϵ} on $T^{1}M$ by defining $d\sigma_{\epsilon} = d\nu_{\epsilon}^{s} \times d\nu^{su}$ which we may assume to be normalized in such a way that $\sigma_{\epsilon}(T^{1}M) = 1$ for all $\epsilon > 0$. Then the section ξ of TW^s over T^1M is contained in the Hilbert space of sections which are square integrable with respect to σ_{ϵ} for all $\epsilon > 0$, with Hilbert norm bounded independent of ϵ . Moreover σ_{ϵ} is quasi-invariant under the action of the geodesic flow, and we have $\frac{d}{dt}\sigma_{\epsilon}\circ\Phi^{t}|_{t=0}$ (v)= $2\langle X,\xi\rangle(v)-2\langle X,\xi_{\epsilon}\rangle(-v)-q(\epsilon)$ where as before $q(\epsilon)<0$ is the pressure of the function $2\langle X, \xi_{\epsilon} \rangle$ on T^1M .

Lemma 5.3. For every $\delta > 0$ there is a number $\epsilon(\delta) > 0$ such that $\int \|\xi_{\epsilon} - \xi\|^2 d\sigma_{\epsilon} < \delta$ for all $\epsilon < \epsilon(\delta)$.

Proof. Recall that the vector fields ξ_{ϵ}, ξ are pointwise uniformly bounded in norm, independent of ϵ . Lemma 5.1 together with the precompactness of the space of positive locally bounded Δ_{ϵ} -harmonic functions on \tilde{M} then implies the following: Let $\tilde{\nu}^{su}$ be the lift of the measures ν^{su} to the leaves of $W^{su} \subset T^1\tilde{M}$. Then for every $v \in T^1\tilde{M}$ and $\tilde{\nu}^{su}$ -almost every $w \in W^{su}(v)$ the restriction of $\tilde{\xi}_{\epsilon}$ to $W^s(w)$ converges uniformly on compact sets to the restriction of ξ .

Let $C \subset T^1 \tilde{M}$ be a set with a local product structure, given by a

vector $v \in T^1\tilde{M}$, a compact ball $B \subset W^{su}(v)$ about v, a compact ball $A \subset W^s(v)$ about v and a homeomorphism $\Lambda \colon A \times B \to C$ such that $\Lambda(w,z) \in W^s(z) \cap W^{su}(w)$ as in the proof of Lemma 4.3. We assume that the projection of C to T^1M is surjective.

Since C can be covered by a finite number of fundamental domains for the action of $\pi_1(M)$ on $T^1\tilde{M}$, there is a number $c_0 > 0$ such that $\sigma_{\epsilon}(C) \leq c_0$ for all $\epsilon \in (0, \delta_0]$, where we denote the lift of σ_{ϵ} to $T^1\tilde{M}$ again by σ_{ϵ} . By the infinitesimal Harnack inequality we can further choose a number m > 0 such that $\|\xi_{\epsilon}\|^2(v)$ and $\|\xi\|^2(v)$ is not larger than m for all $v \in T^1M$ and all $\epsilon \in (0, \delta_0]$.

Let $\delta > 0$ be given. By the properties of the measures ν^s_{ϵ} there is then a number $\rho > 0$ such that $\sigma_{\epsilon}(\Lambda(A \times E)) < \delta/8m$ whenever $E \subset B$ is Borel and $\tilde{\nu}^{su}(E) < \rho$. On the other hand, for $\tilde{\nu}^{su}$ -almost every $w \in B$ the sections ξ_{ϵ} converge on $\Lambda(A \times \{w\})$ uniformly to ξ as $\epsilon \to 0$; hence there is a number $\epsilon(\delta) > 0$ such that $\tilde{\nu}^{su}(E) < \rho$ where $E = \{w \in B \mid \|\xi_{\epsilon} - \xi\|^2(\Lambda(z, w)) \ge \delta/2c_0 \text{ for some } z \in A \text{ and } \epsilon \le \epsilon(\delta)\}.$

For $\epsilon < \epsilon(\delta)$ we then have

$$\int \|\xi_{\epsilon} - \xi\|^{2} d\sigma_{\epsilon} \leq \int_{C} \|\xi_{\epsilon} - \xi\|^{2} d\sigma_{\epsilon}
= \int_{\Lambda(A \times E)} \|\xi_{\epsilon} - \xi\|^{2} d\sigma_{\epsilon} + \int_{\Lambda(A \times (B - E))} \|\xi_{\epsilon} - \xi\|^{2} d\sigma_{\epsilon}
\leq 4m\sigma_{\epsilon}(\Lambda(A \times E)) + \sigma_{\epsilon}(\Lambda(A \times B))\delta/2c_{0} \leq \delta$$

by the above. This shows the lemma.

Corollary 5.4. $q(0) = \lim_{\epsilon \to 0} q(\epsilon) = 0$.

Proof. Assume to the contrary that $q(0) = \lim_{\epsilon \to 0} q(\epsilon) < 0$; recall that $q(\epsilon) < q(0)$ for every $\epsilon > 0$. By Lemma 5.3 we then can find a number $\epsilon > 0$ such that $\int \|\xi_{\epsilon} - \xi\|^2 d\sigma_{\epsilon} < \frac{1}{16} q(0)^2$. Since the norm of the geodesic spray X is constant 1, from this it follows that

$$|\int \langle X, \xi - \xi_{\epsilon} \rangle d\sigma_{\epsilon}| \leq \int \|\xi - \xi_{\epsilon}\| d\sigma_{\epsilon} \leq (\int \|\xi - \xi_{\epsilon}\|^{2} d\sigma_{\epsilon})^{1/2} < -\frac{1}{4}q(0).$$

But $\frac{d}{dt}\sigma_{\epsilon} \circ \Phi^t \mid_{t=0} = 2\langle X, \xi - \xi_{\epsilon} \rangle - q(\epsilon)$ and consequently

$$0 = \int \frac{d}{dt} \sigma_{\epsilon} \circ \Phi^{t} \mid_{t=0} d\sigma_{\epsilon} = \int 2\langle X, \xi - \xi_{\epsilon} \rangle d\sigma_{\epsilon} - q(\epsilon) \ge -\frac{1}{2}q(0)$$

by the above estimates, a contradiction to our assumption q(0) < 0. Hence the corollary is proved.

As a corollary we obtain the second part of Theorem B.

Corollary 5.5.

- 1) There is a number c > 0 such that $\int_{S(p,R)} G_0(p,y)^2 d\lambda_{p,R}(y) \leq c$ for all $p \in \tilde{M}$, all $R \geq 1$.
- 2) $\liminf_{R\to\infty} \int_{S(p,R)} G_0(p,y)^{2-\epsilon} d\lambda_{p,R} = \infty$ for every $\epsilon > 0$.

Proof. Statement 1) follows from the arguments in the proof of Corollary 3.6. To show 2) let $\epsilon>0$; by the first part of Theorem B there is then a number $\alpha>0$ such that $G_0(p,y)^{2-\epsilon}\geq \alpha^{-1}e^{-\alpha\operatorname{dist}(p,y)}G_0(p,y)^2$ for all $y,p\in \tilde{M}$ with $\operatorname{dist}(p,y)\geq 1$. Choose now $\epsilon>0$ sufficiently small that $q(\epsilon)>-\alpha/2$; such a number exists by Corollary 5.3. The Harnackinequality at infinity of Ancona for the operator Δ_ϵ implies that there is a number $c(\epsilon)>0$ such that $\int_{S(p,R)}G_\epsilon(p,y)^2e^{-q(\epsilon)R}d\lambda_{p,R}(y)\geq c(\epsilon)$ for all $R\geq 1$. But the maximum principle yields that $G_0(p,y)\geq \overline{c}G_\epsilon(p,y)$ for all $p,y\in \tilde{M}$ with $\operatorname{dist}(p,y)\geq 1$, where $\overline{c}>0$ is a universal constant. Hence

$$\int_{S(p,R)} G_0(p,y)^{2-\epsilon} d\lambda_{p,R}(y) \ge \alpha^{-1} \overline{c} \int_{S(p,R)} G_{\epsilon}(p,y)^2 e^{-\alpha R} d\lambda_{p,R}(y)$$

$$\ge \alpha^{-1} \overline{c} c(\epsilon) e^{\alpha R/2}$$

for all $R \geq 1$, and the corollary is proved.

References

- [1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987) 495-536.
- [2] _____, Sur les fonctions propres positives des variétés de Cartan-Hadamard, Comment. Math. Helv. 64 (1989) 62-83.
- [3] M. Anderson & R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985) 429-461.
- [4] Y. Benoist, P. Foulon & F. Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 4 (1992) 33-74.
- [5] G. Besson, G. Courtois & S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geometric & Funct. Anal. 5 (1995) 731-799.
- [6] E.B. Davies, One-parameter semigroups, Academic Press, New York, 1980.
- [7] P. Foulon & F. Labourie, Sur les variétés asymptotiquement harmonique, Invent. Math. 109 (1992) 97-111.
- [8] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal. 51 (1983) 285-311.
- [9] E. Ghys & P. De la Harpe, Sur les groupes hyperboliques d'aprés Mikhael Gromov, Birkhäuser, Boston 1990.
- [10] U. Hamenstädt, An explicit description of the harmonic measure, Math. Z. 205 (1990) 287-299.

- [11] ______, Time-preserving conjugacies of geodesic flows, Ergodic Theory Dynamical Systems 12 (1992) 67-74.
- [12] _____, Harmonic measures for compact negatively curved manifolds, Preprint, 1995.
- [13] ______, A new description of the Bowen-Margulis measure, Ergodic Theory Dynamical Systems 9 (1989) 455-464.
- [14] ______, Cocycles, Hausdorff measures and cross ratios, to appear in Ergodic Theory Dynamical Systems.
- [15] V. A. Kaimanovich, Brownian motion on foliations: Entropy, invariant measures, mixing, J. Funct. Anal. 22 (1989) 326-328.
- [16] F. Ledrappier, Ergodic properties of Brownian motion on covers of compact negatively curved manifolds, Bol. Soc. Brasil. Mat. 19 (1988) 115-140.
- [17] ______, A renewal theorem for the distance in negative curvature, Proc. Sympos. Pure Math. 57 (1995) 351-360.
- [18] ______, Ergodic properties of the stable foliations, Proceedings Güstrow 1990, Lecture Notes in Math. 1514 (1992) 131-145.
- [19] _____, A heat kernel characterization of asymptotic harmonicity, Proc. Amer. Math. Soc. 118 (1993) 1001-1004.
- [20] G.A. Margulis, Certain measures associated with U-flows on compact manifolds, Functional Anal. Appl. 4 (1970) 55-67.
- [21] D. Sullivan, Related aspects of positivity in Riemannian Geometry, J. Differential Geom. 25 (1987) 327-351.
- [22] P. Walters, An introduction to ergodic theory, Graduate Texts in Math. Vol. 79, New York, Springer, 1982.

Universität Bonn